
www.manaraa.com

 

Evaluation of Structural Contribution of Asphalt Mixtures through Improved 

Performance Parameters 

 

 

BY 

 

 

RASOOL NEMATI 

 

 

B.S. Civil Engineering, University of Mazandaran 

 

M.S. Civil Engineering, University of Science and Research (IAU), Tehran Branch 

 

 

DISSERTATION 

 

 

Submitted to the University of New Hampshire 

 

in Partial Fulfillment of 

 

the Requirements for the Degree of 

 

 

 

Doctor of Philosophy 

 

in 

 

Civil and Environmental Engineering 

 

 

 

 

 

May 2019



www.manaraa.com

ProQuest Number:

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that  the author did not send a complete manuscript
and  there  are missing pages, these will be noted. Also, if material had  to be removed,

a note will indicate the deletion.

ProQuest

Published  by ProQuest LLC (  ). Copyright of the Dissertation is held  by the Author.

All rights reserved.
This work is protected against unauthorized copying under  Title 17, United  States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor,  MI 48106 - 1346

13882820

13882820

2019



www.manaraa.com

 

I 
 

 

This dissertation was examined and approved in partial fulfillment of requirements for the degree 

of Doctor of Philosophy in Civil and Environmental Engineering by:  

 

 

 

     

Dissertation Director, Eshan V. Dave 

Associate Professor, Civil and Environmental Engineering, 

University of New Hampshire 

 

 

Jo E. Sias 

Professor, Civil and Environmental Engineering, University 

of New Hampshire 

 

 

Majid Ghayoomi 

Associate Professor, Civil and Environmental Engineering, 

University of New Hampshire 

 

 

Rajib B. Mallick 

Professor, Civil and Environmental Engineering,  

Worcester Polytechnic Institute 

 

 

Andrew F. Braham 

Associate Professor, Civil Engineering, 

University of Arkansas 

 

 

On April 11, 2019   

 

Approval signatures are on file with the University of New Hampshire Graduate School. 

  



www.manaraa.com

 

II 
 

DEDICATION 
 

To Moloud, my lovely wife, for all of her support, patience and kindness during this journey and to 

Liana, my daughter who is going to bring a lot of joy and happiness to our life when she is born. 

  



www.manaraa.com

 

III 
 

ACKNOWLEDGMENT 
 

First and foremost, I would like to acknowledge my adviser Dr. Eshan Dave for all of his endless 

support, patience, motivation and immense knowledge. This Ph.D. would have never been 

accomplished without your trust in me and providing excellent guidance to my research. 

I would also like to sincerely thank Dr. Jo Sias for her exceptional mentorship and feedback that 

was put into my Ph.D. I am grateful that I had the chance of working with and learning from you 

as your student. 

Besides, I would like to thank my committee members, Dr. Majid Ghayoomi, Dr. Rajib Mallick 

and Dr. Adndrew Braham for their invaluable input to me thesis. 

Many thanks to all my colleagues in the asphalt research group at UNH: Dr. Reyhaneh Rahbar-

Rastegar, Dr. Mirkat Oshone, Dr. Mohammad Elshaer, Dr. Yaning Qiao, Chris Decarlo, Katie 

Haslett, Runhua Zhang, Chibuike Ogbo and Danial Mirzaiyanrajeh. We have always had a friendly 

environment and you mean more than friends to me. 

Last but not least, I would like to thank my parents and sister as well as my parents and sister-in-

law for all the endless love and support. 

  



www.manaraa.com

 

IV 
 

 

TABLE OF CONTENTS 

DEDICATION................................................................................................................................. II 

ACKNOWLEDGMENT ................................................................................................................... III 

List of Figures ............................................................................................................................. VII 

List of Tables ............................................................................................................................. VIII 

ABSTRACT ................................................................................................................................... IX 

1. Introduction ........................................................................................................................... 1 

1.1 Background and Motivation .......................................................................................................... 2 

2. Literature Review ................................................................................................................... 5 

2.1 AASHTO 1993 Design Guide ........................................................................................................... 6 

2.2 AASHTO 1993 Design Factors ........................................................................................................ 6 

2.2.1 Equivalent Single Axle Load (ESAL) ......................................................................................... 6 

2.2.2 Reliability ................................................................................................................................. 7 

2.2.3 Present Serviceability Index (PSI)............................................................................................ 7 

2.2.4 Structural Number (SN) .......................................................................................................... 7 

2.2.5 Soil Resilient Modulus (Mr) ..................................................................................................... 8 

2.3 Layer Coefficient ............................................................................................................................ 8 

2.4 Layer Coefficient Calibration .......................................................................................................... 8 

2.4.1 Pavement Structural Response ............................................................................................... 9 

2.4.2 Pavement Performance .......................................................................................................... 9 

2.4.3 Mechanistic-Empirical Design Approach ................................................................................ 9 

2.4.4 Material Properties Characterization ..................................................................................... 9 

2.4.5 Falling Weight Deflectometer ............................................................................................... 11 

2.5 Review of Layer Coefficients used by Other Agencies ................................................................. 11 

3. Materials, Methods and Research Approach ......................................................................... 14 

3.1 Materials ...................................................................................................................................... 15 

3.2 Laboratory Evaluation Methods .................................................................................................. 16 

3.2.1 Resilient Modulus (Mr) .......................................................................................................... 16 

3.2.2 Complex Modulus (E*) .......................................................................................................... 16 

3.2.3 Semi-Circular Bend (SCB) ...................................................................................................... 17 

3.2.4 Direct Tension Cyclic Fatigue (S-VECD) ................................................................................. 18 

3.2.5 Disk-Shaped Compact Tension Test (DCT) ............................................................................ 19 



www.manaraa.com

 

V 
 

3.3 Research Approach ...................................................................................................................... 20 

3.3.1 Effects of Mixture Type and Design on Performance Indices ............................................... 20 

3.3.2 Evaluation and Development of Performance Index Parameters ........................................ 21 

4. Statistical Evaluation of the Effects of Mix Design Properties on Performance Indices of 

Asphalt Mixtures (Appendix: Paper1) .......................................................................................... 23 

4.1 Abstract ........................................................................................................................................ 24 

4.2 Significance of the Study .............................................................................................................. 24 

5. Evaluation of Laboratory Performance and Structural Contribution of Cold Recycled Versus 

Hot Mixed Intermediate and Base Course Asphalt Layers in New Hampshire (Appendix: Paper2) . 25 

5.1 Abstract ........................................................................................................................................ 26 

5.2 Significance of the Study .............................................................................................................. 26 

6. Nominal Property Based Predictive Models for Asphalt Mixture Complex Modulus (Dynamic 

Modulus and Phase Angle) (Appendix: Paper3) ............................................................................ 27 

6.1 Abstract ........................................................................................................................................ 28 

6.2 Significance of the Study .............................................................................................................. 28 

7. Development of a Complex Modulus Based Rutting Index Parameter for Asphalt Mixtures) 

(Appendix-Paper4) ...................................................................................................................... 29 

7.1 Abstract ........................................................................................................................................ 30 

7.2 Significance of the Study .............................................................................................................. 30 

8. Development of a Rate-Dependent Cumulative Work and Instantaneous Power Based Asphalt 

Cracking Performance Index (Appendix-Paper 5) ......................................................................... 31 

8.1 Abstract ........................................................................................................................................ 32 

8.2 Significance of the Study .............................................................................................................. 32 

9. Development of a Damage Growth Rate-Based Fatigue Failure Criterion for Asphalt Mixtures 

Using Simplified-Viscoelastic Continuum Damage Model ............................................................. 33 

9.1 Introduction ................................................................................................................................. 34 

9.2 Material and Testing .................................................................................................................... 34 

9.3 Field Conditions ............................................................................................................................ 35 

9.4 Results of the Direct Tension Cyclic Fatigue Test ......................................................................... 36 

9.5 Development of the Damage-Growth Rate based Fatigue Failure Criterion ............................... 38 

9.6 Comparison of the Proposed Damage Growth Rate Fatigue Criteria (CSNf) with Currently 

Available Criteria (Nf @ GR =100, DR and Sapp) ................................................................................... 40 



www.manaraa.com

 

VI 
 

9.7 Evaluation of the Study Mixtures through the Proposed Failure Criterion .................................. 42 

9.7.1 Evaluating the Field Performance of the Study Mixtures through New Fatigue Cracking 

Performance Criteria(CNf

S ) ............................................................................................................. 43 

9.7.2 Evaluating the Laboratory Performance of the Study Mixtures through Different Failure 

Criteria ........................................................................................................................................... 44 

9.8 Summary and Conclusion ............................................................................................................. 45 

10. Methodology to Develop the Layer Coefficients for AASHTO 1993 Design Approach .......... 47 

10.1 Introduction ............................................................................................................................... 48 

10.2 Resilient Modulus Based Layer Coefficients .............................................................................. 49 

10.3 Field Distress Data Analysis ....................................................................................................... 50 

10.4 Back-Calculation of Layer Coefficients from Field IRI measurements ....................................... 53 

10.5 Incorporating the Laboratory Performance Test Results in Development of Layer Coefficients

 ........................................................................................................................................................... 59 

10.6 Correlation of the Layer Coefficients with Mixture Properties .................................................. 62 

10.7 Mixture Property Based Predictive Model for Layer Coefficients .............................................. 66 

10.8 Summary, Conclusion and Future Work .................................................................................... 69 

11. Summary, Conclusion, Recommendations and Future Extensions ...................................... 71 

11.1 Summary .................................................................................................................................... 72 

11.2 Conclusions ............................................................................................................................... 72 

11.3 Recommendations ...................................................................................................................... 74 

11.4 Future Extensions ...................................................................................................................... 75 

12. References ....................................................................................................................... 77 

Appendices ................................................................................................................................. 81 

Appendix: Paper 1 (Chapter 4) ...................................................................................................... A 

Appendix: Paper 2 (Chapter 5) ...................................................................................................... B 

Appendix: Paper 3 (Chapter 6) ...................................................................................................... C 

Appendix: Paper 4 (Chapter 7) ...................................................................................................... D 

Appendix: Paper 5 (Chapter 8) ....................................................................................................... E 

  



www.manaraa.com

 

VII 
 

List of Figures 
 

FIGURE 1. ESTIMATING LAYER COEFFICIENT OF DENSE-GRADED ASPHALT 

CONCRETE BASED ON RESILIENT MODULUS. ............................................................ 10 

FIGURE 2. RESILIENT MODULUS TEST RESULT AND SETUP .......................................... 16 

FIGURE 3. COMPLEX MODULUS TEST RESULT AND SETUP ........................................... 17 

FIGURE 4. SEMI-CIRCULAR BEND TEST RESULT AND SETUP ........................................ 18 

FIGURE 5. DAMAGE CHARACTERISTIC CURVE AND DIRECT TENSION CYCLIC 

FATIGUE TEST SETUP ........................................................................................................ 19 

FIGURE 6. DISK-SHAPED COMPACT TENSION TEST RESULT AND SETUP .................. 19 

FIGURE 7. THE DISSERTATION OBJECTIVES AND OVERALL RESEARCH APPROACH

 ................................................................................................................................................. 20 

FIGURE 8. NORMALIZED FIELD FATIGUE CRACKING ...................................................... 36 

FIGURE 9. DAMAGE CHARACTERISTIC CURVES (DCC) ................................................... 37 

FIGURE 10. Nf @ GR =100 FATIGUE FAILURE CRITERIA .................................................... 37 

FIGURE 11. DR FATIGUE FAILURE CRITERION .................................................................... 37 

FIGURE 12. Sapp FATIGUE FAILURE CRITERION .................................................................. 38 

FIGURE 13. A) PSEUDO STIFFNESS VERSUS DAMAGE ACCUMULATION (C VS S), B) 

PSEUDO STIFFNESS VERSUS LOADING CYCLE (C VS N) .......................................... 39 

FIGURE 14. 𝐶𝑁𝑓

𝑆 VERSUS Nf PLOTS ........................................................................................... 41 

FIGURE 15. STATISTICAL CORRELATION BETWEEN THE FIELD CRACKING LENGTH 

AND THE PROPOSED FATIGUE CRITERION ................................................................. 42 

FIGURE 16. PROPOSED (𝐶𝑁𝑓

𝑆 ) FATIGUE FAILURE CRITERION AGAINST NUMBER OF 

LOAD REPETITIONS TO FAILURE (Nf) PLOTS FOR THE STUDY MIXTURES. ........ 43 

FIGURE 17. NORMALIZED FIELD CRACK LENGTH FOR DIFFERENT MIXTURES IN 

TERMS OF METER PER KILOMETER .............................................................................. 44 

FIGURE 18. NORMALIZED FIELD FATIGUE CRACKING PERFORMANCE VERSUS 

PROPOSED FATIGUE FAILURE THRESHOLD (𝑁𝑓@ 𝐶𝑁𝑓

𝑆 = 100). ................................ 44 

FIGURE 19. COMPARISON OF ASPHALT MIXTURE LABORATORY PERFORMANCE 

USING DIFFERENT FAILURE CRITERIA (FOR EACH CRITERIA BEST 

PERFORMING MIXTURE IS USED AS NORMALIZING FACTOR). ............................. 45 

FIGURE 20. RESILIENT MODULUS BASED LAYER COEFFICIENTS ................................ 50 

FIGURE 21. IRI VERSUS TIME FOR DIFFERENT MIXTURES AND PROJECTS: A) ARGG 

MIXTURES, B) 12.5MM NMAS MIXTURES, C) 9.5 MM NMAS MIXTURES. .............. 53 

FIGURE 22. BINDER PERFORMANCE GRADE SPECIFICATION MAP FOR NEW 

HAMPSHIRE .......................................................................................................................... 55 

FIGURE 23. FLOWCHART TO BACK-CALCULATE THE LAYER COEFFICIENTS FROM 

FIELD IRI DATA ................................................................................................................... 56 

FIGURE 24. NOMINAL PROPERTY BASED PREDICTED aave-value FOR ALL THE STUDY 

SURFACE MIXTURES ......................................................................................................... 68 

  



www.manaraa.com

 

VIII 
 

List of Tables 

 

TABLE 1. LAYER COEFFICIENTS USED BY OTHER AGENCIES ....................................... 13 

TABLE 2. STUDY MIXTURES DESIGN CHARACTERISTICS .............................................. 15 

TABLE 3. SUMMARY OF CHAPTER 4 CONTRIBUTIONS TO DISSERTATION 

OBJECTIVES. ........................................................................................................................ 24 

TABLE 4. SUMMARY OF CHAPTER 5 CONTRIBUTIONS TO DISSERTATION 

OBJECTIVES. ........................................................................................................................ 26 

TABLE 5. SUMMARY OF CHAPTER 6 CONTRIBUTIONS TO DISSERTATION 

OBJECTIVES. ........................................................................................................................ 28 

TABLE 6. SUMMARY OF CHAPTER 7 CONTRIBUTIONS TO DISSERTATION 

OBJECTIVES. ........................................................................................................................ 30 

TABLE 7. SUMMARY OF CHAPTER 8 CONTRIBUTIONS TO DISSERTATION 

OBJECTIVES. ........................................................................................................................ 32 

TABLE 8. SUMMARY OF CHAPTER 9 CONTRIBUTIONS TO DISSERTATION 

OBJECTIVES. ........................................................................................................................ 34 

TABLE 9. MIXTURES CHARACTERISTICS ............................................................................ 35 

TABLE 10. PEARSON’S CORRELATION COEFFICIENTS FOR THE S-VECD BASED 

PARAMETERS. ..................................................................................................................... 40 

TABLE 11. MIXTURE RANKING ORDER IN ACCORDANCE TO DIFFERENT FAILURE 

CRITERION ........................................................................................................................... 41 

TABLE 12. MIXTURE RANKING ORDER IN ACCORDANCE TO DIFFERENT FAILURE 

CRITERION ........................................................................................................................... 45 

TABLE 13. DEFINING THE INITIAL SERVICEABILITY VALUE BASED ON 

CONSTRUCTION QUALITY AND IRI VALUES ONE YEAR AFTER CONSTRUCTION

 ................................................................................................................................................. 52 

TABLE 14. GENERAL DESIGN ASSUMPTIONS TO BACK-CALCULATE A-VALUES 

FROM FIELD DATA ............................................................................................................. 54 

TABLE 15. RESILIENT MODULUS BASED LAYER COEFFICIENTS OF THE HOT MIXED 

BINDER AND BASE COURSE MIXTURES ....................................................................... 54 

TABLE 16. BACK-CALCULATED LAYER COEFFICIENTS FROM THE FIELD IRI DATA

 ................................................................................................................................................. 58 

TABLE 17. LAYER COEFFICIENTS AT DIFFERENT RELIABILITY LEVELS FOR ARGG 

AND NON-ARGG WEARING COURSE ASPHALT MIXTURES BASED ON FIELD IRI 

DATA ...................................................................................................................................... 59 

TABLE 18. DEVELOPMENT OF AVERAGED PERFORMANCE BASE INCORPORATED A-

VALUES FOR THE STUDY MIXTURES ............................................................................ 61 

TABLE 19. CORRELATION MATRIX INCLUDING ARGG MIXTURES .............................. 64 

TABLE 20. CORRELATION MATRIX INCLUDING ONLY NON-ARGG MIXTURES ........ 65 

TABLE 21. aave-value AND amin-value FOR NON-ARGG MIXTURES...................................... 66 

TABLE 22. PREDICTION MODEL FOR aave-value .................................................................... 68 

  



www.manaraa.com

 

IX 
 

ABSTRACT 
 

Evaluation of Structural Contribution of Asphalt Mixtures Through Improved 

Performance Indices 

 

By 

RASOOL NEMATI  

University of New Hampshire, May, 2019 

A variety of approaches are available to design the pavement structures. These approaches are 

generally divided into two main categories as empirical and mechanistic-empirical (M-E) methods. 

The most widely used empirical method is the AASHTO 1993 design approach which uses material 

specific coefficients (layer coefficients) to quantify the structural capacity provided by each 

pavement layer. These coefficients are experimentally developed values from the AASHO road test 

which was conducted in early 1960s and are based on statistical regressions. Almost no fundamental 

or engineering mixture properties or explicit failure criterion were used in their original 

development. On the other hand, the M-E approaches use fundamental mixture properties such as 

complex modulus (E* and phase angle) to determine the pavement’s structural response. However, 

M-E approaches require extensive data for local calibration and as a results many state agencies are 

still using the empirical approach.  

One of the major modifications in the AASHTO 1993 design approach has been to update the layer 

coefficients (a-value) of the asphalt mixtures using different mechanistic and performance based 

measures. The layer coefficients have significant influence in determining the layer thickness which 

translates into the structural contribution of the layers as well as the long term performance of the 

pavement and consequently the construction and maintenance costs. Therefore, it is critical to 

determine reliable a-values that are most relevant to the regional conditions and locally used 

materials.  

A set of 18 commonly used mixtures in New Hampshire were selected for performance testing and 

evaluation of structural contribution in terms of layer coefficients. In order to develop the layer 

coefficients, comprehensive research was performed on the performance and properties of the 

mixtures through different mechanistic based laboratory testing methods. In addition, mixtures 

from all over the New England region were used to develop and validate three novel performance 

index parameters for rutting, fatigue and transverse cracking. The developed parameters were 

incorporated with the field distress data such as International Roughness Index (IRI) in order to 

develop mechanistically informed layer coefficients for New Hampshire flexible pavement design 

approach. 
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1.1 Background and Motivation 

Asphalt mixture as the top most layer in the pavement structure is prone to different types of 

structural distresses such as rutting, fatigue and thermal cracking. Depending on the loading and 

climatic conditions, the asphalt layer thickness in flexible pavements can vary from 5 cm to over 

30 cm. To enhance reliability of pavement designs and to ensure high return on investment for 

agencies, it is paramount to use performance driven design philosophies. This dissertation explores 

use of laboratory performance testing informed asphalt mixture structural coefficients to improve 

reliability of AASHTO 1993 empirical pavement design system. 

 

It is well known that the type and magnitude of structural responses (deformations, stresses and 

strains) vary throughout the pavement so there is need for different types of asphalt mixtures, each 

designed to handle specific types and magnitude of responses within the structure. This not only 

increases the design reliability but can also result in considerable savings in financial resources by 

optimizing material properties in each layer.   

 

Within the pavement structure, and depending on the design thickness, the asphalt course is 

generally divided into three sublayers namely the base, intermediate (binder) and surface (wearing) 

layers. The wearing course is usually made of smaller aggregate size and higher binder content to 

prevent both functional and structural distresses. The intermediate and base courses contain 

relatively coarser aggregates and lower binder content. The intermediate layer is placed directly 

under the wearing course to facilitate the construction of the wearing course and to distribute the 

traffic loads onto a larger area.  This layer increases the overall pavement structural capacity and 

helps prevent the wearing course from different types of premature distresses. The asphalt base 

layer is very similar to the intermediate course in terms of the performance expectations. Base 

layers are used in addition to the intermediate layer in cases where the load magnitudes and 

repetitions call for a relatively thicker pavement. In this case the base layer provides a strong 

foundation for the overlaying lifts to prevent or reduce the risk of rutting and fatigue related 

distresses.  

A variety of approaches are available to design the pavement structures. These approaches are 

generally divided into two main categories as empirical and mechanistic-empirical (M-E) methods. 

The most widely used empirical method is the AASHTO 1993 design approach which uses 

material specific coefficients (layer coefficients) to quantify the structural capacity provided by 

each pavement layer. These coefficients are experimentally developed values from the AASHO 

road test which was conducted in early 1960s and are based on statistical regressions.  Almost no 

fundamental or engineering mixture properties or explicit failure criterion were used in their 

original development. On the other hand, the M-E approaches use fundamental mixture properties 

such as complex modulus (E* and phase angle) to determine the pavement’s structural response. 

Using different transfer functions, the pavement response is used to determine the damage 

accumulation over the pavement design life and the pavement failure is determined when a 

predefined distress threshold is reached. Although the M-E methods have the superiority of using 

the fundamental mix properties, the calibration of transfer functions for different climatic and 

loading conditions requires substantial amounts of field and laboratory data for different types of 

mixtures. In many instances, these data may not be readily available and could require extensive 

amount of time and financial investments to generate them. As a result, many state highway 
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agencies still prefer to use the empirical design approaches with some enhancements in the design 

equations to address their specific traffic and climatic circumstances. One of the major 

modifications in the AASHTO 1993 design approach has been to update the layer coefficients (a-

value) of the asphalt mixtures using different mechanistic and performance based measures. The 

layer coefficients have significant influence in determining the layer thickness which translates 

into the structural contribution of the layers as well as the long term performance of the pavement 

and consequently the construction and maintenance costs. Therefore, it is critical to determine 

reliable a-values that are most relevant to the regional conditions and locally used materials. 

Motivated by need for development of performance incorporated layer coefficients for asphalt 

mixtures used in New Hampshire, the primary objectives of this research are set up as: 

1. Evaluation of the effect of mixture type and nominal design properties on various lab 

measured pavement performance indices. 

2. Assessment of the current lab based performance indices in their suitability for use with 

New Hampshire flexible pavements. If needed, develop improved indices to better 

distinguish the mixtures performances. 

3. Development of a methodology to update the layer coefficients for AASHTO 1993 design 

approach on the basis of laboratory performance tests and field performance data.    

 

In order to accomplish the objectives of this dissertation, a number of research efforts have been 

undertaken and several of these have culminated into peer-review journal articles. This doctorate 

dissertation is organized in 11 chapters. A short summary of each chapter is provided in this section 

and full manuscripts are either attached as appendices to this document or have been discussed 

within the thesis under designated chapter number and title. 

 Chapter 1 is dedicated to the introduction and motivation for this research, as well as the study 

objectives. Chapter 2, includes the literature review on the topic of AASHTO 1993 pavement 

design approach and the origination of layer coefficients along with different methods in the 

literature that have been used to update the layer coefficients. Chapter 3 discusses the breadth of 

materials that have been examined in this study, followed by a description of mechanistic and 

performance-based laboratory tests that have been used to characterize the study mixtures. This 

chapter also includes an overview of the research approach that has been used in this dissertation 

to fulfill the study objectives. Chapters 4 evaluates the effect of asphalt mixture constituents on 

the predicted performance through use of various statistical approaches. Also, the correlation of 

different performance index parameters is investigated to determine the indices that can be used 

interchangeably. As one of the important influential parameters that can significantly affect the 

mixtures’ mechanical properties and performance, the production methods (hot versus cold 

mixtures) have been investigated in the presented research, this is discussed in Chapter 5. 

Generation of large data-sets from current and previous laboratory testing campaigns, led to 

development of nominal property based predictive models for asphalt mixtures’ complex modulus 

(E* and Phase angle), this effort is described in chapter 6. Since many state highway agencies such 

as New Hampshire Department of Transportation do not employ mechanical testing to evaluate 

rutting susceptibility of mixtures, a novel complex modulus based rutting index parameter is 
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developed and validated in chapter 7. The time dependency of the asphalt mixture fracture process 

is evaluated and incorporated with the use of Illinois semi-circular bend test in chapter 8. These 

investigations resulted in development of a rate dependent cracking index (RDCI) parameter that 

is able to lower the coefficient of variation of the test results and can reliably differentiate different 

aging levels with a higher reliability as compared to the flexibility index. Chapter 9 evaluates 

different fatigue failure criterion derived from the simplified viscoelastic continuum damage (S-

VECD) theory and direct tension cyclic fatigue testing methods. The evaluations indicated that 

neither of the existing criterion are able to reliably rank the field fatigue cracking performance. A 

damage growth rate based fatigue failure criterion is proposed in this chapter which is shown to 

reliably rank the field fatigue performance. Chapter 10 combines the findings from previous 

chapters where the layer coefficients are back-calculated from incorporation of the rutting, fatigue 

and transverse cracking index parameters with the field measured International Roughness Index 

(IRI). In order to back-calculate the layer coefficients, the Present Serviceability Index (PSI) is 

determined from the field measured IRI, which leads to determination of the structural number and 

consequently the IRI based layer coefficients. Using the statistical analysis the lab measured 

performance index parameters are combined with the IRI based layer coefficients and result in the 

performance incorporated layer coefficients which indicate the structural contribution of the 

mixtures in the pavement design. Chapter 11 summarizes the findings of the research and 

contribution of the thesis to the asphalt mixture and pavement design while pointing out the future 

extension of the research. Details of research efforts and corresponding results and discussion for 

Chapters 4 thru 8 of this dissertation are in form of peer-reviewed journal manuscripts.  Full 

manuscripts are attached as appendices to this thesis, a brief synopsis of the work from these 

manuscripts are provided as body of these chapters.   
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2.1 AASHTO 1993 Design Guide 

Currently, New Hampshire Department of Transportation (NHDOT) uses the AASHTO 1993 

guide to design the structure of pavements. This design guide is based on the American Association 

of State Highway Officials (AASHO) road test that was performed in the late 1950s and early 

1960s in Ottawa, Illinois.  

The primary goal in this test was to come up with a relationship between the number of axle load 

repetitions and the pavement performance during the pavement service life. The AASHO test was 

conducted on six different loops and the loading started in October 1958 and ended in November 

1960 [1]. The main variables in this road test were the hot mix asphalt, base and subbase 

thicknesses as well as the different axle configurations that were applied on different test loops. 

The observations and data obtained from this test were converted into different parts of a design 

equation which relates the number of applied axle loads to the required thickness of the pavement. 

AASHO road test resulted in major findings in the pavement engineering science such as the 

relationship between the load and the damage called as Fourth Power Law. It also introduced 

important factors such as Serviceability, Equivalent Single axle load (ESAL) and the Structural 

Number (SN). The first AASHO design guide was published in 1961 as the “AASHO Interim 

Guide for the Design of Rigid and Flexible Pavements”. Since the equations derived from AASHO 

test were based on limited data from two years of loading and only one climatic condition (Ottawa, 

Illinois), the design guide was significantly updated in 1972 and 1993 to meet different nationwide 

requirements and climatic conditions. The latter update is called as the AASHTO 1993 design 

guide and has not changed since then. Although major steps have been taken to switch from this 

empirical guide to a mechanistic-empirical pavement design guide (MEPDG) in the past three 

decades, the high costs and lack of available database for regionally calibrating such design guide 

has become an issue for many of the state DOTs. Hence, AASHTO 1993 design equation 

(Equation.1) is still being used as a reliable pavement structure design tool in many states in US 

as well as many other countries around the world [2].  

𝑙𝑜𝑔𝑤18 = 𝑍𝑅𝑆0 + 9.36 𝑙𝑜𝑔(𝑆𝑁 + 1) − 0.2 +
𝑙𝑜𝑔[

𝛥𝑃𝑆𝐼

4.2−1.5
]

0.4+
1094

(𝑆𝑁+1)5.19

+ 2.32𝑙𝑜𝑔𝑀𝑟 − 8.07      Equation (1) 

Where: 

𝑙𝑜𝑔𝑤18: Logarithm of number of the allowable equivalent single axle loads (8.2kN) in design 

period 

𝑍𝑅: Z-statistic, determined based on reliability level of the design 

𝑆0: Standard deviation of the design 

𝛥𝑃𝑆𝐼:  Allowable serviceability loss at end of design life 

𝑀𝑟: Resilient Modulus of subgrade soil 
 

2.2 AASHTO 1993 Design Factors 

2.2.1 Equivalent Single Axle Load (ESAL)  

AASHTO 1993 design procedure for determining the thickness of different layers is based on the 

total number of applied wheel load over the design life of the pavement. Since the axle loads and 
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configurations vary among different vehicle types, the damage induced by them would be different. 

One of the important achievements by the AASHO road test was the concept of Equivalent Axle 

Load Factor (EALF) which basically converts the amount of induced damage from any type of 

vehicle to an equivalent damage caused by an 18kip (80kN) single axle load. Then the summation 

of equivalent damage over the pavement design life is considered as the Equivalent Single Axle 

Load (ESAL) which is the only traffic factor in the design [1]. 

2.2.2 Reliability 

This parameter is defined as the probability that the design will perform its intended function over 

the pavement design life and changes based on the type and importance of the road. Reliability is 

indeed the factor of safety of the pavement design that is implemented in the AASHTO 1993 design 

guide. In other words, reliability of the design is used to ensure that the actual ESALs over the 

design life will not exceed the estimated ESALs. For instance, a 50% reliability means that the 

actual ESALs will be equal to the estimated ESALs at the end of the design period.  

2.2.3 Present Serviceability Index (PSI)  

The serviceability of a pavement is essentially evaluated by the ride quality experienced with the 

road users. The serviceability index is ranked from 5 to 1 as the best and worst ride quality 

respectively. This factor is mainly used as a tool to determine the proper time for the correct type 

of maintenance, rehabilitation or even reconstruction of the pavement by the pavement 

management system (PMS). The initial serviceability of the pavement is a function of pavement 

type and construction quality and the typical value for the flexible pavements is considered as 4.2 

whereas the adopted value for the terminal serviceability for this type of pavement is typically 2 

for new designs. 

2.2.4 Structural Number (SN) 

Structural number of pavement is defined as a criteria to measure the ability of pavement to 

withstand the applied load. The primary purpose of any pavement design is to protect the subgrade 

soil from the stresses due to the loading, as well as penetration of surface water into the subgrade 

soil which can significantly decrease its modulus and result in different types of damages. 

Therefore, the structural number of a pavement is a function of type, thickness, and drainage 

capability of different materials used in the pavement structure. The weaker the subgrade soil the 

higher the required structural number will be for the same loading and climatic conditions. 

Equation. 2 defines the structural number for a pavement structure with “n” layers. 

𝑆𝑁 = ∑ 𝑎𝑖 × 𝐷𝑖
𝑛
𝑖=1 × 𝑚𝑖             Equation (2) 

Where: 

𝑆𝑁: Structural number 
𝑎𝑖: Layer coefficient of the ith layer  
𝐷𝑖: Thickness of the ith layer 
𝑚𝑖: Drainage coefficient of the ith layer 
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2.2.5 Soil Resilient Modulus (Mr) 

The resilient modulus of the soil is an important factor in AASHTO 1993 design guide. The 

resilient modulus of the subgrade soil is subjected to significant changes due to weather conditions 

during the year. Therefore, the effective resilient modulus which is the representative modulus 

value for different weather conditions is calculated based on the damage that could occur to the 

pavement during different seasons with different subgrade soil modulus. This value is the only 

subgrade soil property that is considered in AASHTO 1993 and because of that is highly influential 

in determining the structural number (SN) of the overall design. 

2.3 Layer Coefficient 

As it was mentioned earlier one of the important factors that contributes to the Structural Number 

is the type of material that is covered in the form of the layer coefficient (a-value). As the definition 

provided by AASHTO design guide, layer Coefficient is the empirical relationship between the 

structural number of a pavement structure and layer thickness, which indicates the relative ability 

of a material to function as a structural component of a pavement [2]. Layer coefficients (a-value) 

were originally derived as the regression coefficients in relating the SN to the thickness of different 

layers in AASHTO road test. In other words, for a given pavement structure the SN value was first 

determined through using equation 1 and then based on the configuration of the pavement the 

calculated SN value was correlated to different layer thicknesses through equation 2 and finally 

the regression coefficients (a-values) were determined. The main factors affecting the a-value are: 

 Material type and properties 

 Layer thickness and location 

 Failure criterion 

 Loading level 

In terms of asphalt material, the layer coefficient is not only based on the asphalt material 

properties and thickness but it is highly affected by the underlying material’s properties.  

2.4 Layer Coefficient Calibration 

Research conducted in National Center for Asphalt Technology (NCAT) revealed that the layer 

coefficient followed by traffic level and resilient modulus are the most influential factors in 

determination of the pavement thickness considering the AASHTO 1993 design equation[3]. 

Although the original layer coefficients from the AASHTO road test are reliable, they are 

applicable only to the types of material, traffic and the environmental conditions under which they 

have been generated. Since layer coefficient has a significant influence in determining the layer 

thickness and consequently on the construction expenses as well as the long term performance of 

the pavement, it is essential to determine the calibrated and reliable a-values for different regions 

and materials. For this purpose, many of the states that implement AASHTO 1993 design 

procedure or use layer coefficient as part of their specific design methodology have tried to 

evaluate their own commonly used materials and assign new a-values to them. Old studies which 

are mainly experimental based, have shown that a-values are correlated with gradation, thickness, 

abrasion of aggregate and more important the strength or stability of asphalt mixtures [4]. Layer 

coefficient recalibration is conducted based on different methodologies which will be discussed 

briefly in this subsection. 
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2.4.1 Pavement Structural Response 

 Some mechanistic based studies have tried to use the concept of equivalent deflection by assigning 

a reference mixture with a defined thickness and compare other mixtures to that by determining 

the required thickness to result in the identical deflection to that of the reference mixture under 

same loading magnitude. Similarly, the identical maximum vertical stress on top of subgrade soil 

for different types of hot mix asphalt mixtures has widely been used to recalculate the a-values. 

Maximum tensile strain at the bottom of asphalt layer has also been used to determine the layer 

coefficient of recycled mixes. The thickness of the recycled layer to result in the equivalent number 

of load repetitions to failure (Nf) of the standard reference hot mix asphalt on the same subgrade 

soil is used to determine the layer coefficient since the SN is equal for both cases [4]. 

2.4.2 Pavement Performance 

AASHTO pavement performance analysis has also been used as another practical method for layer 

coefficient calibration. This method monitors the serviceability indicators (rut depth, cracks, 

patching, IRI and etc.) and calculates the PSI. The rate of change in serviceability for a given 

pavement structure with known thicknesses for different layers is then converted to SN value. 

Running the regression analysis on the SN (Equation 2) results in the new layer coefficients. This 

method has been successfully used by NCAT to recalibrate the a-value of the asphalt layer used by 

Alabama Department of Transportation (ALDOT). Using the IRI value and converting that to PSI 

for the known cross sections, researchers in NCAT suggested a new layer coefficient of 0.54 

instead of o.44 for the hot mixed asphalt which can reduce the construction costs by approximately 

18% [3, 5].  

2.4.3 Mechanistic-Empirical Design Approach 

A more sophisticated way to calibrate the a-value is to use the mechanistic-empirical method 

(MEPDG). This method which has been used by Washington State is highly data intensive and is 

recommended to be used by the agencies that are in the process of transforming from the empirical 

to the mechanistic-empirical design approach and have enough database available for the 

calibration. Once the database is available, the calibration can be simply done by designing the 

required thickness through MEPDG approach and then calibrate the a-value in the AASHTO 

design method to obtain the same thickness for the structure. Using this method by WSDOT the 

a-value of hot mixed asphalt increased from 0.44 to 0.50 which significantly reduces the 

construction costs [5]. 

2.4.4 Material Properties Characterization  

Among all the factors that influence the layer coefficients, the material type and properties have 

the highest impact, and to account for these factors, AASHTO 1993 design guide proposes the 

resilient modulus (Mr) of the material [2] since it is not only a measure of stiffness but also can be 

an indicator of strength of the material. 

The relationship between the asphalt mixture’s layer coefficient and the elastic resilient modulus 

at 21°C was established in 1972. This relationship (Equation 3) which is shown in Figure 1 is valid 

for a dense graded asphalt mixture and can only be used if the elastic modulus is between 750 MPa 
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and 3100 MPa. AASHTO 1993 design guide proposes the value of 0.44 as the layer coefficient for 

Mr corresponding to 3100 MPa [1].  

ai = 0.4 log(Mr)-0.951               Equation (3) 

 

Figure 1. Estimating layer coefficient of dense-graded asphalt concrete based on resilient 

modulus. 

Research conducted at University of Wisconsin for recalibrating the a-values of commonly asphalt 

mixes used by Wisconsin Department of Transportation (WisDOT) implemented the Mr 

measurement in lab. The test was performed in accordance to the AASHTO T-294-94 standard at 

20 °C. Using equation 3 new layer coefficients were derived. The main concern stated by 

researchers was that the resilient modulus measurements for different types of mixtures at the 

aforementioned temperature were so close and as a result the a-values were turned out to be nearly 

the same. As a solution and for better differentiating the mixtures, a triaxial testing apparatus was 

used to measure the rutting at 52 °C and 64 °C. The researchers proposed the correlation of the a-

value with the combination of resilient modulus, rutting performance and any other available 

damage factor to calculate the new a-values [6].  

Among many state agency DOTs that use empirical design methods, South Carolina is using the 

AASHTO 1972 design guide and is trying to switch into the mechanistic-empirical (MEPDG) 

design method. Research was performed to enhance the precision of the a-values used for the 

asphalt base mixtures in South Carolina. The procedure included running the dynamic modulus 

test on the mixtures and prediction of the Mr value from the (E*) master curve at the frequency of 

1.59 Hz at 20°C which is indeed equal to 0.1 second of loading on the specimen (same loading 

time for Mr test in accordance to ASTM D7369). Once the Mr was predicted, equation 3 was 
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utilized to calculate the new a-values that were increased from the initial value of 0.34 to above 

0.44 [7]. 

2.4.5 Falling Weight Deflectometer  

According to the AASHTO 1993 design guide a more reliable way to determine the layer 

coefficients is to back calculate the moduli from Falling Weight Deflectometer (FWD) test on the 

road in lieu of lab testing since there might be a variation between the lab made samples and the 

mixture placed in the field [2] and also FWD is considered as a way to simulate the dynamic 

loading of a moving wheel in a wide range of loading level which is a more realistic way of loading. 

 Perhaps, New Hampshire Department of Transportation (NHDOT) has been one of the leading 

State DOTs in the nation to use FWD for recalibration of layer coefficient values for pavement 

materials. Research conducted in 1994 by Janoo on a segment of I-93 between exit 18 and 19 

through construction of ten test sections with different combination of materials for the same 

structural number. The primary purpose of testing was to evaluate the a-value used for the 

Reclaimed Stabilized Base (RSB) that had been used during the construction, since the sections 

constructed with this type of material revealed higher surface deflections compared to other 

sections of the road. The results from FWD and back calculated moduli confirmed the hypotheses 

of using the incorrect a-value for this type of material as well as some other material in the design 

and the new a-value for RSB was assigned which decreased from 0.17 to 0.14. The layer coefficient 

of the asphalt material used by NHDOT ranges between 0.34-0.38 and back calculations from 

FWD in this research resulted in a-value of 0.37 for the wearing course [8].  

2.5 Review of Layer Coefficients used by Other Agencies 

As part of the literature review in this research, a survey was conducted from 21 State DOTs that 

currently use any of the AASHTO based empirical design methods to determine the typical a-

values that are used for the surface and non-wearing course asphalt mix materials. The survey was 

not limited to any specific region or climatic condition but the main aim was to evaluate and 

compare the current NHDOT’s layer coefficients with the values used by other state DOTs.   
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Table 1 shows the result of the survey and it can be seen that New Hampshire is using one of the 

lowest a-values compared to other states even in the New England area that the environmental and 

perhaps the traffic loading doesn’t seem to be significantly different. The result of the survey 

confirmed the potential possibility to obtain new layer coefficients for the asphalt materials in New 

Hampshire as the asphalt mix design method, production and construction techniques have 

changed quite extensively since the last evaluation done in 1994. 
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Table 1. Layer coefficients used by other agencies  

Layer type Layer coefficient(ai) DOTs 

 

wearing Course 

0.54 ALDOT 

0.5 WSDOT 

 

0.44 

ARDOT, FDOT, SCDOT, CTDOT, 

MaineDOT, MassDOT, IADOT, PADOT, 

WisDOT, NJDOT, MDOT, GDOT, ConnDOT 

0.43 ODOT 

0.42 NYCDOT 

0.4 DelDOT, IDOT 

0.38 NHDOT 

0.35 NDOT, VTDOT 

 

Non-wearing Course 

0.44 FDOT, PADOT, SCDOT 

0.42 NYCDOT 

0.4 DelDOT,ConnDOT 

0.36 ODOT 

0.35 NDOT 

0.34 NHDOT, MassDOT, MaineDOT, MDOT 

0.33 VTDOT 

0.31 WisDOT 

0.3 GDOT, IDOT 
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3. Materials, Methods and Research Approach 
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3.1 Materials 

 

In order to evaluate the structural contribution of the asphalt mixtures in this dissertation, a variety 

of 18 asphalt mixtures were investigated. The mixtures include two asphalt rubber gap graded 

(ARGG), four cold central plant recycled (CCPR) mixtures as well as other different types of 

conventional and polymer modified hot mixed asphalt (HMA) mixtures as wearing, intermediate, 

and base course layers. The study mixtures are selected to represent a wide range of aggregate size 

and gradation, binder type, recycled asphalt pavement (RAP) amount and recycled binder ratio 

(RBR), and gyration level commonly used on New Hampshire highways. Information on the study 

mixtures is summarized in Table 2. It should be mentioned that the RBR and RAP percentages are 

used for HMA and CCPR mixtures respectively and all of the HMA mixtures are designed at 4% 

air void level. 

Table 2. Study Mixtures Design Characteristics 

 

 * MS-4 is a special type of emulsion that is specified by the NHDOT bureau of material which   

is explained in Paper2-Chapter 5 of the dissertation. 

Mixture Course
NMAS 

(mm)

BinderGrade/  

Emulsion type
AC% VMA % Vbe% RBR/RAP% Gyration

ARGG-1 PG58-28 7.8 19.1 15.1 0.0 75

ARGG-2 PG58-28 7.6 18.4 14.4 6.6 75

W-6428H-12.5 PG64-28 5.4 16.1 12.1 18.5 75

W-5828L PG58-28 5.8 15 11 16.2 50

W-5834L PG58-34 5.4 15.3 11.3 18.5 50

W-7628H-12.5 PG76-28 5.4 16.1 12.1 18.5 75

W-7034PH PG70-34 5.8 16 12 0.0 75

W-7628H-9.5 PG76-28 6.1 16.3 12.3 14.8 75

W-5828H PG58-28 5.9 16.6 12.6 16.9 75

W-6428H-9.5 PG64-28 6.4 17.1 13.1 0.0 75

B-6428H PG64-28 4.8 14.3 10.3 20.8 75

B-5834L PG58-34 4.6 14.1 10.1 21.7 50

B-5828H PG58-28 4.8 14.9 10.9 20.8 75

BB-6428L Base 25 PG64-28 4.8 14.8 10.8 20.8 50

_ 100 _

Cold Mix 

Interlayer

19

12.5

MS-4*

100 _

4 _

_

4 _ _

_

4 _ _ 100

4 _ _ 100

CCPR-1-a

CCPR-2

CCPR-2-a

Wearing

12.5

9.5

Intermediate 19

CCPR-1
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3.2 Laboratory Evaluation Methods 

3.2.1 Resilient Modulus (Mr) 

In order to determine the preliminary layer coefficients for the mixtures the resilient modulus (Mr) 

test was conducted at 25°C on three disk-shaped replicates in accordance to ASTM D7369-11 

standard test method [9]. The test method involves a haversine loading protocol with 0.1s of 

loading and 0.9s of rest period in 105 cycles where the last five cycles are used to calculate the 

resilient modulus. The preliminary a-values are then calculated using Equation 3 which is 

recommend by AASHTO 1993 design guide. It should be mentioned that all replicates have been 

compacted at 6±0.5% air void level. This air-void level was chosen for all experimental evaluation 

in this dissertation. The air void level choice was informed by NHDOT’s typical air-void level for 

in-place pavements after initial consolidation from traffic loading. In other words, 6% air void 

level represents a large amount of asphalt pavements in New Hampshire. 

  

Figure 2. Resilient modulus test result and setup  

3.2.2 Complex Modulus (E*) 

Complex modulus test is performed in accordance to AASHTO T342 standard [10] using an 

Asphalt Mixture Performance Tester (AMPT) machine on 150×100 mm cylindrical specimens 

with a target air-void of 6±0.5%. The test is conducted on three replicate specimens at different 

temperatures (4.4°C, 21.1°C and 37.8°C) and loading frequencies (25, 10, 5, 1, 0.5, 0.1 Hz) to 

characterize the linear viscoelastic properties of the asphalt mixtures; dynamic modulus |E*| and 

phase angle (δ). The dynamic modulus and phase angle master-curves are constructed at a 

reference temperature of 21.1°C using appropriate shift factors. The |E*| master-curve indicates 

the stiffness of the mix in a broad range of frequencies at the reference temperature. The master-

curve is an excellent tool to compare different mixtures in terms of the stiffness and the rutting 

susceptibility of the mix. Also, the mixtures can be assessed and ranked in terms of their potential 

for fatigue and low temperature cracking based on their stiffness. Usually the mixtures with higher 

stiffness and relatively flatter master-curve are more prone to crack. The phase angle master-curve 

on the other hand reflects the extent of viscous and elastic properties of the mix at a given 

temperature and frequency with higher phase angle indicating a better crack resistance of the mix 

and vice versa. 
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Figure 3. Complex modulus test result and setup 

3.2.3 Semi-Circular Bend (SCB) 

Semi-Circular Bend test is performed to determine the medium temperature fracture properties of 

asphalt mixtures in accordance to AASHTO TP 124 standard [11]. The test is conducted in a line-

load displacement rate of 50mm/min at 25°C for 4 replicates at a target air void level of 6±0.5%. 

Fracture energy (Gf) defined as the amount of energy required to create unit fracture surface is 

determined from area under the load-displacement curve through Equation 4 and the Illinois 

flexibility index (FI) which normalizes the fracture energy by the post peak slope at inflection 

point can be determined through equation (5) [12]. While the fracture energy of different mixtures 

could be the same, the post peak slope is shown to be a good indicator of fracture propagation rate 

throughout the mixture, hence it is a good discriminating factor for mixture fracture resistance 

ranking. 

  

𝐺𝑓 =
𝐴𝑟𝑒𝑎 𝑢𝑛𝑑𝑒𝑟 𝑙𝑜𝑎𝑑−𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑐𝑢𝑟𝑣𝑒 (𝐹𝑎𝑟𝑐𝑡𝑢𝑟𝑒 𝑤𝑜𝑟𝑘)

𝐹𝑟𝑎𝑐𝑡𝑢𝑟𝑒 𝐴𝑟𝑒𝑎
       Equation (4) 

 

𝐹𝐼 =
𝐺𝑓

𝑆𝑙𝑜𝑝𝑒 𝑎𝑡 𝑝𝑜𝑠𝑡 𝑝𝑒𝑎𝑘 𝑖𝑛𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡
                            Equation (5) 
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𝑫𝒚𝒏𝒂𝒎𝒊𝒄 𝑴𝒐𝒅𝒖𝒍𝒖𝒔 =
𝑷𝒆𝒂𝒌 𝑺𝒕𝒓𝒆𝒔𝒔

𝑷𝒆𝒂𝒌 𝑺𝒕𝒓𝒂𝒊𝒏
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Figure 4. Semi-Circular Bend test result and setup 

3.2.4 Direct Tension Cyclic Fatigue (S-VECD) 

The uniaxial fatigue test is performed in accordance with AASHTO TP 107 [13] using Simplified 

Viscoelastic Continuum Damage (S-VECD) theory. The test is conducted on four replicates each 

at a different strain level under cyclic tension and constant crosshead testing mode. The main 

outcome of this test is the damage characteristic curve (DCC) which is a mixture property that is 

independent of loading mode and temperature and indicates the trend of reduction of pseudo 

stiffness (C) as damage grows.  

Currently, there are three accepted fatigue criteria based on the S-VECD approach: GR and DR and 

Sapp. G
R is the rate of averaged dissipated pseudo strain energy which indicates the decrease in the 

mixture’s energy storage capacity due to each loading cycle [14]. The number of cycles to failure 

at GR equal to 100 (Nf @ GR=100) is usually used to rank mixtures. DR is the average reduction in 

pseudo stiffness per loading cycle and indicates the decrease in material integrity in terms of 

stiffness as the load is applied. DR values usually range from 0.3 to 0.7 with higher values 

indicating better fatigue resistance [15]. Sapp is the accumulated damage when C is equal to 1-DR 

[16]. 

𝐺𝑅 =
∫ 𝑤𝑐

𝑅
𝑁𝑓

0

𝑁2
𝑓

          Equation (6)             

𝐷𝑅 =
 ∫ (1−𝐶)

𝑁𝑓
0

𝑁𝑓
         Equation (7) 

𝑆𝑎𝑝𝑝 =
1

10000
× (

1

𝐶11
× 𝐷𝑅)

1

𝐶12
       Equation (8) 

Where:𝑤𝑐
𝑅: total released pseudo strain energy, C: Pseudo stiffness, Nf: number of loading cycles 

to failure, C11 and C12: Model coefficients of the damage characteristic curve 
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Figure 5. Damage characteristic curve and direct tension cyclic fatigue test setup 

3.2.5 Disk-Shaped Compact Tension Test (DCT) 

The disk-shaped compact tension (DCT) test was performed in accordance to the ASTM D7313 

standard testing method [17] on three replicates. The test is developed to determine the low 

temperature fracture properties of the asphalt mixtures and is conducted at a crack mouth opening 

displacement (CMOD) rate of 1 mm/min. In general, the testing temperature is determined by 

10°C+PGLT. The two index parameters that are used to analyze the DCT test results are the 

fracture energy (Gf) and the fracture strain tolerance (FST) [18]. The FST is determined by dividing 

Gf by the fracture strength (Sf). 

 

Figure 6. Disk-shaped compact tension test result and setup 
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3.3 Research Approach 

 

In order to fulfill the dissertation objectives a number of research efforts were undertaken to 

determine the asphalt mixture performance characteristics and their correlations with the structural 

contribution of asphalt mixtures commonly used in New Hampshire. These studies are divided 

into two major categories, where each category includes three efforts that form different chapters 

of this dissertation (Ch. 4, 5, 6, 7, 8 and 9). Finally the ultimate goal of evaluation of the structural 

contribution of the asphalt mixtures in form of layer-coefficients for the AASHTO 1993 design 

approach is realized on basis of inputs from all previous chapters. The two major categories and 

their respective sub-studies that are indicated in Figure 7 and will be briefly discussed next:  

 

 

Figure 7. The dissertation objectives and overall research approach 

3.3.1 Effects of Mixture Type and Design on Performance Indices 

As a first step in determining the structural contribution of the asphalt mixtures in the pavement, 

it is necessary to understand the effect of individual mixture design parameters such as aggregate 

size and gradation, and mixture volumetrics such as air void, binder content, voids in the mineral 

aggregate, etc. Also, due to the advancements in asphalt mixture materials production and 

placement, different types of mixtures such as wearing, intermediate and base course may be used 

within the structure of the pavement where each of these courses have their own specific 

functionality in the pavement. For example, with respect to base courses, both hot and cold 

mixtures are often used while each of these mixture types may exhibit significantly different 

performance. Therefore, it is important to investigate and evaluate the implications of using 

different mixture types in the pavement. Because of these reasons, a comprehensive evaluation of 
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the study mixtures was conducted through performing mechanistic and performance tests to 

characterize the mixtures and determine the significant factors in terms of nominal properties of 

the mixtures through advanced statistical techniques. Also, the effect of mixture types and 

production methods (hot versus cold mixtures) were investigated through modeling the pavement 

structure and implementing advanced pavement mechanistic analysis software tools such as 

FlexPAVETM. The results from the testing and analysis are provided in chapters 4 (Appendix paper 

1) and 5 (Appendix paper 2) of the dissertation and are submitted as manuscripts in peer reviewed 

journals. 

As one of the most important properties of asphalt mixtures, the complex modulus has been widely 

used in order to characterize the mixtures linear viscoelastic (LVE) properties as these properties 

are directly used in the M-E pavement design approaches. For this reason, many regression based 

models have been developed to predict the asphalt mixture dynamic modulus. However, most of 

these models are highly dependent on variables such as binder dynamic shear modulus, aggregate 

gradation etc. which still need significant lab effort and expensive equipment which may not 

always be readily available in the lab. Also, limited work has been conducted to predict the 

mixture’s phase angle. Based on the findings from chapters 4 and 5, predictive models for asphalt 

mixture complex modulus (E* and phase angle) were developed in chapter 6 (Appendix paper 3). 

These models use only nominal properties of the mixtures such as nominal maximum aggregate 

size, air void, binder type and content as well as percentage of recycled material in the mixture. 

Usage of these properties that are readily available during the mixture design procedure, eliminates 

the need for even simple laboratory based variables such as gradation in the predictive models. 

Also, these locally calibrated models can be used in pre-evaluating the mixtures performance and 

their contribution to the overall capacity of the pavement structure. The results from this study is 

published in a peer review journal. 

3.3.2 Evaluation and Development of Performance Index Parameters  

Different testing methods and index parameters are available to evaluate and rank the mixtures 

performance with respect to particular distress types. In order to evaluate and determine the 

structural contribution of the asphalt mixtures, it is important to investigate the discriminability of 

these tests and indices and their correlation with the field distress. 

There are different empirical and mechanistic-empirical tests such as Hamburg wheel tracking test, 

asphalt pavement analyzer and flow number that are currently used to determine the mixtures 

rutting susceptibility. However, some State highway agencies such as NHDOT do not use any type 

of specific performance tests to determine the rutting performance of the mixtures. Nevertheless, 

it is well-known that rutting susceptibility can significantly affect the structural contribution of the 

mixtures. Therefore, it was necessary to determine the rutting susceptibility of the study mixtures 

and its effect on pavements structural capacity. For this reason, a set of 7 mixtures (outside of the 

study mixtures) for which the Hamburg wheel track test data is available, were selected to 

investigate the possibility of development a complex modulus based rutting index parameter. The 

analysis indicated that there is high correlation between the behavior of pre-peak portion of phase 

angle master-curve with rutting. Based on the observations, a complex modulus based rutting index 
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parameter was developed in chapter 7 (Appendix paper 4) which is able to rank the mixtures 

performance with high reliability while indicating a high correlation with the Hamburg wheel test 

track as well as field rut depth for different mixtures. In order to evaluate the mixtures rutting 

susceptibility during the mixture design phase, the complex modulus predictive models (developed 

in chapter 6) can be used to construct the master-curves and determine the value of the rutting 

index parameter.  

There are a variety of cracking performance index parameters such as and Gf, FI, GR DR and Sapp 

that are used to rank and evaluate the mixtures cracking performance in the lab. However, these 

indices may not always be able to distinguish the mixtures performance with respect to field 

distress conditions or different levels of aging. In chapter 8 of the dissertation, a study was 

conducted to evaluate the ability of FI in discriminating the asphalt mixtures’ performance and 

their sensitivity to different aging levels. The statistical analysis revealed that FI may not be able 

to distinguish the long term aging levels of mixtures while indicating a relatively high coefficient 

of variation (COV) between the replicates. Therefore, in this dissertation a rate-dependent cracking 

index (RDCI) parameter which is based on cumulative work and instantaneous power from the 

SCB test results was developed. This index revealed to be capable of categorizing the mixtures in 

a broader differentiated groups with respect to cracking with nearly 10% lowered COV in average 

for the studied mixtures. This index also revealed to be able to well distinguish different long term 

ageing levels. The full description of this study is included in Appendix paper 5. 

The capability of S-VECD based index parameters (GR,DR and Sapp) were investigated in chapter 

9 of the dissertation. A set of 6 different mixtures (outside of study mixtures) that are placed on 

same cross sections of I-93 highway were analyzed through S-VECD approach to determine if the 

indices are able to rank the mixtures with respect to available field fatigue distress data. The 

analysis revealed that neither of the indices can reliability rank the mixtures. Therefore, a new 

fatigue failure criterion based on damage growth rate (𝐶𝑁𝑓

𝑆 ) is proposed and investigated. The new 

criterion indicated to not only be able to rank the mixtures but it also is highly correlated with the 

magnitude of fatigue distress in 5 years after construction. The results of this study are presented 

in Chapter 9 of the dissertation 

In order to develop the layer coefficients, the findings from previous chapters in terms of index 

parameters were combined with the layer coefficients back-calculated from the field distress data 

such as International Roughness Index (IRI). As a result, three different types of layer coefficients 

called as aIRI-value, aave-value, amin-value were determined in Chapter 10. The aIRI-value is 

determined based on back-calculation from field IRI data whereas the other two types of layer 

coefficients are developed based on statistically incorporating the performance index parameters 

with the aIRI-value at different levels of reliability. 
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4. Statistical Evaluation of the Effects of Mix Design 

Properties on Performance Indices of Asphalt Mixtures 

(Appendix: Paper1) 
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The content of this chapter of dissertation is in form of a peer-reviewed journal article. Manuscript 

for the article is provided in the appendix to this dissertation. Abstract and significance of this 

article within the overall scope of this dissertation as described next. 

4.1 Abstract 

A variety of testing and performance index parameters are available to assess the asphalt mixture 

performance with respect to different structural distresses. However, due to continuous 

improvements in asphalt material production and construction techniques, it is necessary to 

regularly evaluate the correlation of the performance index parameters with mixture design 

properties. It is also important to determine the correlation between index parameters from 

different tests to help save time and financial resources by making engineering based adjustments 

to the mixture design before conducting multiple tests. This study explores the statistical 

correlation between mixture design properties and performance index parameters as well as the 

correlations among the performance index parameters from different tests. A total of 14 commonly 

used asphalt mixtures in New Hampshire were evaluated using the complex modulus (E*), resilient 

modulus (Mr), direct tension cyclic fatigue (S-VECD), Illinois semi-circular bend (SCB-IFIT), and 

disk-shaped compact tension (DCT) tests to assess the correlations between various performance 

indices and mix design properties. The results indicate that the aggregate fractions that pass 4.75 

mm and 75 µm sieve sizes, the binder useful temperature interval, and recycled asphalt content 

significantly affect most of the index parameters. Medium to high correlations were observed 

between S-VECD, DCT and SCB with respect to different index parameters. 

4.2 Significance of the Study  

The structural contribution of asphalt mixtures in the pavement structure is a direct function of 

mixture design properties such as aggregate size and gradation, binder type and content, air void 

percentage and any additives in the mixture. For that reason, a thorough understanding of the effect 

of each of the mixture’s components with respect to a specific type of distress is of high interest 

to pavement engineers. Moreover, the increasing traffic demand along with use of higher amounts 

of recycled material in the mixtures have led to need for performance based asphalt mixture design 

procedures such as performance engineered mix design. However, the time and costs associated 

with conducting multiple performance tests during mix design iterations may be one of the biggest 

challenge in routine use of such approaches. Therefore, it is necessary to determine the correlations 

between different performance index parameters and make engineering based adjustments to the 

mixture design prior to conducting multiple time consuming and expensive tests. The research 

conducted in this portion of dissertation allows to improve the understanding of correlations 

between asphalt mix properties (such as, aggregate size and binder grade) to lab measured 

performance properties. A mapping of the work in this portion of dissertation to overall thesis 

objectives in provided in Table 3. 

Table 3. Summary of chapter 4 contributions to dissertation objectives. 

Chapter Paper Contribution to the objectives 

4 1 
Direct contributions to objective 1 

No indirect contributions 
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5. Evaluation of Laboratory Performance and Structural 

Contribution of Cold Recycled Versus Hot Mixed 

Intermediate and Base Course Asphalt Layers in New 

Hampshire (Appendix: Paper2) 
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The content of this chapter of dissertation is in form of a peer-reviewed journal article. Manuscript 

for the article is provided in the appendix to this dissertation. Abstract and significance of this 

article within the overall scope of this dissertation as described next. 

5.1 Abstract  

Depending on the local conditions and structural design of the pavement, multiple asphalt concrete 

layers including base, intermediate, and wearing courses are used. Typically, the base and 

intermediate layers have larger aggregate sizes and lower total asphalt binder contents as compared 

to the wearing course. Recently, cold recycled (CR) asphalt mixtures have gained attention as an 

alternative to the typical base, and to some extent intermediate courses, because of economic and 

environmental advantages. Challenges with CR include the potential high variability of recycled 

asphalt pavement (RAP) and lack of knowledge in terms of structural contribution and long term 

performance of such layers. This study investigates 4 different types of CR and 4 hot mixed plant 

produced asphalt mixtures (3 intermediate courses and 1 base course) that are typical mixtures 

used in New Hampshire. The laboratory performance evaluation is conducted through the resilient 

modulus (Mr), complex modulus (E*), semi-circular bend (SCB) and direct tension cyclic fatigue 

(S-VECD) tests.  Pavement performance prediction is carried out using the results from S-VECD 

approach in the FlexPAVETM software. The test results indicate that the performance of CR is 

highly affected by the amount of oil distillate percentage in the emulsion as well as the amount of 

recovered binder in the RAP.  While having a relatively lower rutting resistance capability, the CR 

mixtures maintained an acceptable fatigue performance. As compared to CR mixtures, hot-mixed 

intermediate and base course mixtures indicated better rutting performance while having lower 

resistance to cracking.  

 

5.2 Significance of the Study  

Due to the advancements in technology, different asphalt mixture production methods such as 

warm and cold mixtures have been produced and used in different layers. However, due to the 

temperature sensitivity of asphalt binders, the production method can significantly influence the 

mixtures properties and performance. Therefore, the structural contribution of mixtures within the 

pavement will be a direct function of mixture production method which is investigated in the 

research contribution that is presented in Paper 2. The research conducted in this portion of 

dissertation allows to improve the understanding of the effect of mixture production methods (cold 

versus hot) in the performance of asphalt mixtures. A mapping of the work in this portion of 

dissertation to overall thesis objectives is provided in Table 4. 

Table 4. Summary of chapter 5 contributions to dissertation objectives. 

Chapter Paper Contribution to the objectives 

5 2 
Direct contributions to objective 1 

No indirect contributions 
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6. Nominal Property Based Predictive Models for Asphalt 

Mixture Complex Modulus (Dynamic Modulus and Phase 

Angle) (Appendix: Paper3) 
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The content of this chapter of dissertation is in form of a peer-reviewed journal article. Manuscript 

for the article is provided in the appendix to this dissertation. Abstract and significance of this 

article within the overall scope of this dissertation as described next. 

6.1 Abstract  
Dynamic modulus (|E*|) and phase angle (δ) are necessary for determining the response of asphalt 

mixtures to in-service traffic and thermal loadings. While a number of |E*| and δ predictive models 

have been developed, many of them require lab measured properties (e.g. binder complex 

modulus). The majority of previous work has focused only on prediction of |E*|, limited models 

exist for prediction of δ. This research utilized generalized regression modelling of lab 

measurements (from 81 asphalt mixtures) to develop and verify prediction models for |E*| and δ 

using only nominal asphalt mix properties that are readily available during the initial mixture 

design and specification process.  

6.2 Significance of the Study  
Although |E*| and δ can be effectively used to predict the long term performance of asphalt 

mixtures using mechanistic analysis, there are limitations related to equipment requirements, 

specimen fabrication complexity, data analysis and other expenses in terms of human resources 

and time requirements. These limitations have severely restricted wide-spread usage of 

mechanistic-empirical and mechanistic pavement analysis and design. Although there are different 

regression based predictive models for dynamic modulus, a limited work has been conducted to 

predict the phase angle. Moreover, most of the available models use variables that still need 

significant lab testing such as the ones that are used in the Pavement ME software. A distinguishing 

factor for research and the prediction models presented in this study as compared to previous 

research is that here only nominal properties of asphalt mixtures, such as nominal maximum 

aggregate size, air void content, asphalt content, the percentage of recycled asphalt pavement 

(RAP) and recycled asphalt shingles (RAS) and asphalt binder performance grade (PG) are used 

in model development. Therefore, development of complex modulus predictive models based on 

the aforementioned properties was deemed important as the performance indices can be estimated 

during materials selection and pavement design process. Also, such models can be used to assess 

how each mix constituent and volumetric property impacts complex modulus. A mapping of the 

work in this portion of dissertation to overall thesis objectives in provided in Table 5. 

Table 5. Summary of chapter 6 contributions to dissertation objectives. 

Chapter Paper Contribution to the objectives 

6 3 

Direct contribution to objective 1 

Indirect contribution to objectives 

2 and 3 
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7. Development of a Complex Modulus Based Rutting 

Index Parameter for Asphalt Mixtures) (Appendix-Paper4) 
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The content of this chapter of dissertation is in form of a peer-reviewed journal article. Manuscript 

for the article is provided in the appendix to this dissertation. Abstract and significance of this 

article within the overall scope of this dissertation as described next. 

7.1 Abstract  
Different testing methods have been used to evaluate the rutting susceptibility of asphalt mixtures. 

Among them, loaded wheel testers, such as the Hamburg Wheel Tracking Test (HWTT), has shown 

to have promising correlation with the field rutting. Moreover, since rutting distress within 

pavement structure has a direct correlation with mixtures’ structural response to loading, the 

complex modulus (|E*| and phase angle) master-curves can be potentially used to estimate the 

mixtures rutting performance. This research introduces and investigates 5 different complex 

modulus based parameters to evaluate the rutting performance of asphalt mixtures. These 

parameters are developed based on two critical points on the |E*| and phase-angle master-curves. 

The first point is related to the frequency corresponding to peak phase angle and the second point 

is related to the reduced frequency on the master-curve which reflects the HWTT testing 

conditions. The results from investigating 22 asphalt mixtures indicate that there is a strong 

correlation between the rutting and the rate of drop in |E*| with respect to changes in frequency 

between the two selected critical points. 

7.2 Significance of the Study  
Many state highway agencies such as New Hampshire Department of Transportation do not have 

any specific requirements for evaluating the rutting susceptibility of the mixtures other than the 

general ones put forth by the AASHTO R30 standard Superpave mixture design which specifies 

the minimum number of gyrations for a given traffic level. However, in general, the mixtures that 

are designed to have an acceptable cracking performance are softer and might be prone to rutting 

in warmer climatic conditions which can significantly affect the ride quality, highway safety and 

maintenance and rehabilitation costs. Considering the limitations of the equipment as well as the 

state agency requirements, there is need for a reliable index parameter to provide a preliminary 

evaluation of the mixtures rutting susceptibility. The significance of this study is to be able to 

identify a complex modulus based rutting parameter that can then be used in layer coefficient 

prediction for purposes of mechanistically informed empirical design approach. The research 

conducted in this portion of dissertation allows for usage of viscoelastic properties of mixtures in 

predicting viscoplastic based distress modes such as rutting without need to perform destructive 

testing which can result in major savings in time and cost. A mapping of the work in this portion 

of dissertation to overall thesis objectives in provided in Table 6. 

Table 6. Summary of chapter 7 contributions to dissertation objectives. 

Chapter Paper Contribution to the objectives 

7 4 
Direct contribution to objective 3 

No Indirect contributions 
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8. Development of a Rate-Dependent Cumulative Work 

and Instantaneous Power Based Asphalt Cracking 

Performance Index (Appendix-Paper 5) 
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The content of this chapter of dissertation is in form of a peer-reviewed journal article. Manuscript 

for the article is provided in the appendix to this dissertation. Abstract and significance of this 

article within the overall scope of this dissertation as described next. 

8.1 Abstract  
Use of the semi-circular bending (SCB) test has gained popularity for evaluating cracking 

performance of asphalt mixtures. An Illinois Flexibility Index Test (I-FIT) variant of SCB has 

shown the ability to distinguish mixtures through use of the flexibility index (FI) parameter. While 

this index has been able to rank the mixtures with respect to performance, a high coefficient of 

variation (COV) among the replicates has often been observed. Furthermore, parameters such as 

total fracture energy and FI do not incorporate rate-dependency of fracture processes which are 

very important for viscoelastic materials such as asphalt mixtures at low and intermediate 

temperatures. In light of these observations, a rate dependent cracking index (RDCI) is proposed 

that utilizes cumulative fracture work potential and instantaneous power calculated from the I-FIT 

test to assess impulse of the mixture. A total of 18 wearing course mixtures were analysed using 

the RDCI and resulted in an average overall reduction of 10.6% in COV as compared to FI while 

maintaining similar ranking of mixtures. In general, RDCI was able to better discriminate the 18 

mixtures as compared to FI. Evaluation of five mixtures at three aging levels showed robustness 

of RDCI in capturing effects of aging on fracture behaviour of asphalt mixtures. 

8.2 Significance of the Study  
One of the main goals of this dissertation is to evaluate the current commonly used performance 

indices to determine the repeatability and reliability of such indices in discriminating the mixtures 

performance. This will allow the state highway agencies to improve their specifications by 

selecting the appropriate test, index parameter and the thresholds associated with that parameter 

to improve the quality of the mixtures. For this reason the flexibility index as a widely used index 

parameter by many of the state transportation department agencies, was investigated. The research 

conducted in this portion of thesis allows for direct application of the rate dependency of asphalt 

mixtures in characterizing the mixtures’ fracture properties which can result in further 

improvements in designing dynamic based loading tests as opposed to monotonic based ones to 

better simulate the realistic traffic conditions. A mapping of the work in this portion of dissertation 

to overall thesis objectives in provided in Table 7. 

Table 7. Summary of chapter 8 contributions to dissertation objectives. 

Chapter Paper Contribution to the objectives 

8 5 

Direct contributions to 

 objective 2 

Indirect contributions to 

 objective 3 
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9. Development of a Damage Growth Rate-Based Fatigue 

Failure Criterion for Asphalt Mixtures Using Simplified-

Viscoelastic Continuum Damage Model 
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9.1 Introduction 

The simplified viscoelastic continuum damage (S-VECD) theory has gained wide-spread attention 

among researchers as a promising asphalt fatigue cracking characterization tool [19-20]. The S-

VECD theory uses a damage evolution law to determine the reduction in the pseudo stiffness (𝐶) 

of material as a function of damage accumulation (𝑆) due to loading cycle (𝑁)  [21]. The damage 

characteristic curve (DCC) reveals the disintegration of a mixture (decrease in pseudo stiffness) as 

the damage grows. However, the determination of the crack localization point from lab test results 

has been a major challenge in mixture characterization using the S-VECD approach. The rate of 

averaged dissipated pseudo strain energy (𝐺𝑅) [14] and average reduction in pseudo stiffness (𝐷𝑅) 

[15] are among the most recent failure criterions that have been proposed to capture the crack 

localization. The pseudo-stiffness based criteria (𝐷𝑅 criterion) has originally been proposed to 

mitigate the extrapolation problems associated with the logarithmic scale of 𝐺𝑅  [22]. However, 

mixtures with significantly different DCC curves could have similar 𝐷𝑅 values as it only considers 

the accumulated decrease in pseudo stiffness (∫ (1 − 𝐶) 𝑑𝑁
𝑁𝑓

0
) and the number of loading cycles 

to failure (𝑁𝑓) regardless of the total damage (𝑆𝑓) prior to localization. In order to overcome this 

deficiency, another parameter called as 𝑆𝑎𝑝𝑝has been recently proposed to combine the effects of 

modulus and toughness in determining cracking susceptibility of asphalt mixtures. This parameter 

is defined as the damage accumulation (𝑆)  when pseudo-stiffness (𝐶) is equal to 1 − 𝐷𝑅 [16]. 

While these parameters have tried to differentiate the asphalt mixtures fatigue cracking 

performance in the lab, their strength in discriminating the mixtures’ field performance through 

actual distress data needs to be assessed.  

The research presented in this chapter contributes to overall thesis objectives as shown in Table 8. 

The objectives of this portion of dissertation research are as follows: 

1- Evaluate the applicability of the exiting S-VECD based fatigue failure criteria such as 𝐺𝑅, 

𝐷𝑅 and 𝑆𝑎𝑝𝑝 in differentiating the fatigue performance of the asphalt mixtures studied in 

this dissertation to determine their applicability as fatigue performance index parameter; 

and,  

2- Develop a new S-VECD based fatigue failure criterion that is better correlated with the 

field performance of asphalt mixtures in New Hampshire.  

 

Table 8. Summary of chapter 9 contributions to dissertation objectives. 

Chapter Paper Contribution to the objectives 

9 N.A. 

Direct contributions to 

 objective 2 

Indirect contributions to 

 objective 3 

 

 

9.2 Material and Testing 

A set of 6 mixtures for which the field performance data is available were used to assess various 

S-VECD theory based fatigue failure criterions. The direct tension cyclic fatigue test in accordance 
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to AASHTO TP 107 standard on the field cores taken after 1 year of construction have been 

conducted by asphalt research group at University of New Hampshire [23]. The mixture design 

and properties of the material used to investigate the fatigue failure criterions are summarized in 

Table 9. The mixtures are part of the North-East High RAP Pooled Fund Study that were placed 

on I-93 in 2011 and yearly field distress data is available for them [24]. Since the pavement 

structure, traffic and climatic conditions are same for each of the six mixtures, it would be possible 

to compare and rank the mixtures independent from other variables that can affect the overall 

pavement response and performance. As the basis of comparison of the mix fatigue performance 

indices will be with respect to the field conditions, the testing and evaluation is conducted on the 

field cores taken after 1 year of construction. Moreover, testing the field cores will eliminate the 

difference between the production air voids which will lead to a more realistic assessment of the 

failure criterions. 

Table 9. Mixtures Characteristics 

Mix 
AC 

(%) 

Recycled 

Binder Ratio 

(%) 

Va 

(%) 

VMA 

(%) 

VFA 

(%) 

M
ix

tu
re

 D
es

ig
n

 Virgin 58-28 5.9 0 4.4 16.8 74 

15% RAP 58-28 5.8 13.9 4.3 16.9 74.2 

25% RAP 58-28 5.8 23.1 4.1 16.7 75.3 

25% RAP 52-34 5.8 23.1 3.5 16.5 79 

30% RAP 52-34 5.8 27.7 3.6 16.4 78.1 

40% RAP 52-34 5.8 37 4.2 17 75.2 

P
ro

d
u
ct

io
n

 

Virgin 58-28 5.96 0 3.5 16.9 79.5 

15% RAP 58-28 6.11 13.2 2.5 15.6 84.2 

25% RAP 58-28 5.98 22.4 2.2 15.2 85.9 

25% RAP 52-34 5.91 22.7 2.5 15.8 84.1 

30% RAP 52-34 6.23 25.8 3.7 16.4 77.7 

40% RAP 52-34 6.19 34.6 3.4 16.7 79.7 

9.3 Field Conditions 

Field performance of the sections has been monitored yearly since construction using an automated 

pavement distress data collection van by New Hampshire DOT. The fatigue cracking is tracked at 

three severity levels.  The weighted crack length for each section is calculated using the following 

equation (more details on use of this approach to characterize field performance can be found in 

Daniel et al., 2018 [24]): 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑐𝑟𝑎𝑐𝑘 𝑙𝑒𝑛𝑔𝑡ℎ (
𝑚

𝑘𝑚
) = (𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦1 𝑐𝑟𝑎𝑐𝑘 𝑙𝑒𝑛𝑔𝑡ℎ) +

2(𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦2 𝑐𝑟𝑎𝑐𝑘 𝑙𝑒𝑛𝑔𝑡ℎ) + 3(𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦3 𝑐𝑟𝑎𝑐𝑘 𝑙𝑒𝑛𝑔𝑡ℎ) + (𝑆𝑒𝑎𝑙𝑒𝑑 𝑐𝑟𝑎𝑐𝑘 𝑙𝑒𝑛𝑔𝑡ℎ)   
           Equation (8)  

The amount of fatigue cracking in each section is shown in Figure 8. In general, the mixtures with 

a lower RAP content indicates less cracking and the PG 58-28 binder appears to be performing 
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better than the PG 52-34 binder (as seen from the two 25% RAP mixes). The 25% RAP PG52-34 

section appears to have the worst performance overall, whereas the 15% RAP PG58-28 indicates 

the best fatigue performance among all other mixtures. While the virgin mixture reveals a 

relatively good and steady performance until the 4th year after construction, it indicates a relatively 

high rate of damage during the 5th year of service. 

 

Figure 8. Normalized Field Fatigue Cracking 

9.4 Results of the Direct Tension Cyclic Fatigue Test 

As mentioned before, the direct tension cyclic fatigue test was conducted in accordance to the 

AASHTO TP 107 standard method in order to determine the decrease in materials load bearing 

capacity through the averaged damage characteristic curves (DCC) plots tested for each mixture 

(Figure 9). Each curve is averaged from the test results conducted on 4 different replicates. The 

curves indicate the disintegration of the mixtures (decrease in pseudo stiffness) as the damage (S) 

grows [25]. However, with respect to DCC, a direct comparison between the mixtures may not be 

appropriate since the number of cycles to failure is missing between curves [26]. Therefore, the 

mixtures are ranked and evaluated with respect to different available failure criterion: (i) 

𝑁𝑓@𝐺𝑅 = 100 ; (ii) 𝐷𝑅; and, (iii) 𝑆𝑎𝑝𝑝, which are plotted in Figure 10, Figure 11 and Figure 12 

respectively. The plots indicate that the ranking of mixtures from the three indices are quite 

different such that the 40% RAP 52-34 is shown to have best fatigue performance with respect to 

𝑁𝑓@𝐺𝑅 = 100 criteria whereas it holds one of the lowest 𝐷𝑅 values and at the same time it is 

ranked as the third best mixture in accordance to 𝑆𝑎𝑝𝑝. Similar observations can be made for other 

mixtures such as 25% RAP 52-34 indicating that none of the indices have been able to reliably 

predict this mixture’s field performance. It can be seen from the results that the current failure 

parameters have not been able to rank the mixtures as compared to the actual field fatigue cracking 

as a standalone parameter. One main reason for this observation could be that with respect to 

continuum damage mechanics, it is the evolution and localization of micro-cracks that results in 

macro-cracks to form fatigue cracking. The magnitude and number of micro-cracks in the S-VECD 

analysis is quantified by the (S) value where neither 𝐺𝑅  and 𝐷𝑅 parameters explicitly take the 

amount of damage (S) into account. Although the  𝑆𝑎𝑝𝑝 parameter tries to incorporate the 

magnitude of the damage in determination of fatigue resistance of the mixtures, it considers the 

damage at the average mixture’s integrity (C at 1- 𝐷𝑅 ). However, since the accumulation of 

damage as well as decrease in capacity is a nonlinear phenomenon, the use of average C and 
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corresponding (S) value may not be an appropriate indicator of fatigue failure. These results 

motivated the need to explore development of a new fatigue failure criterion based on S-VECD 

theory that can improve the reliability of predicting the field fatigue cracking performance. 

 

Figure 9. Damage Characteristic Curves (DCC) 

 

Figure 10. Nf @ GR =100 Fatigue Failure Criteria 

 

Figure 11. DR Fatigue Failure Criterion 
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Figure 12. Sapp Fatigue Failure Criterion 

9.5 Development of the Damage-Growth Rate based Fatigue Failure Criterion 

As discussed in the previous section, neither of the currently available S-VECD theory based 

failure criterion were able to rank the mixtures on the I-93 test sections with respect to the actual 

field fatigue cracking performance which necessitates exploration of new failure criterion.  

For a given test specimen in the direct tension cyclic fatigue test, the decrease in pseudo stiffness 

(𝐶) can be explained through two separate graphs indicted in Figure 13. Figure 13(a) shows the 

damage characteristic curve where decrease in pseudo stiffness is associated with the accumulation 

of the damage (𝐶 vs 𝑆), and Figure 13(b) indicates the decrease in pseudo stiffness for the same 

test due to loading cycles (𝐶 vs 𝑁). In the cyclic fatigue test, the failure point of the test is 

determined through the peak phase angle [27]. This point in the test corresponds to the loading 

cycle at failure (𝑁𝑓) and the accumulated damage at failure (𝑆𝑓). The area above the 𝐶 vs 𝑁 curve 

indicates the accumulated decrease in material’s capacity [15] and can be calculated through the 

following equation:  

 

Accumulated decrease in material’s capacity = ∫ (1 − 𝐶) 𝑑𝑁
𝑁𝑓

0
       Equation (9) 
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Figure 13. a) Pseudo stiffness versus damage accumulation (C vs S), b) Pseudo stiffness 

versus loading cycle (C vs N) 

In order to develop a new fatigue failure criterion in this study, the correlations between these three 

components of S-VECD theory and analysis as the accumulated decrease in material’s capacity 

(∫ (1 − 𝐶) 𝑑𝑁
𝑁𝑓

0
), number of loading cycles to failure  (𝑁𝑓) and accumulated damage at failure(𝑆𝑓) 

were investigated and incorporated to result in a damage growth rate based fatigue failure criterion. 

Using the test results for the 6 mixture from I-93 test section, Pearson’s correlation coefficients 

were determined to investigate the relationships between the aforementioned parameters. These 

are shown in Table 10. The results indicate that as the number of cycles to failure increases, the 

magnitude of the accumulated damage at failure decreases. This correlation indicates that for 

different replicates of a same mixture, a higher level strain in the test may result in a lower amount 

of accumulated damage at the peak phase angle. In other words, at higher cyclic strains the rate of 

development of micro-cracks and their localization to form a macro-crack is high enough that the 

mixture is not able to use its full capacity to evenly disperse damage throughout the continuum to 

withstand the failure. This phenomenon is similar to a thermal shock occurrence for many other 

types of materials including asphalt mixtures where a sudden change in temperature results in 

premature cracks in the material before the material is able to reorganize its microscopic or even 

molecular structure to accommodate the temperature gradient. For the same reason and similarly, 

as the accumulated reduction in material’s capacity (∫ (1 − 𝐶) 𝑑𝑁
𝑁𝑓

0
) increases due to higher strain 

levels the amount the accumulated damage at failure decreases. These observations indicate that 

not only the magnitude of the damage at failure is important but also the rate of increase in damage 

growth (governed by the strain levels at cyclic loading) is an important parameter that should be 
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taken into consideration in development of a mixture fatigue performance index using the S-VECD 

theory.  

 

Table 10. Pearson’s correlation coefficients for the S-VECD based parameters. 

S-VECD based 

parameters 
𝑵𝒇 𝑺𝒇 ∫ (𝟏 − 𝑪) 𝒅𝑵

𝑵𝒇

𝟎

 

𝑵𝒇 1.00 - - 

𝑺𝒇 -0.53 1.00 - 

∫ (𝟏 − 𝑪) 𝒅𝑵
𝑵𝒇

𝟎

 1.00 -0.53 1.00 

 

With regards to the aforementioned discussion on the correlations between the investigated 

parameters, new fatigue failure criterion which is based on damage growth rate is proposed and 

indicated in Equation 10. 

 

𝐶𝑁𝑓

𝑆 =
∫ (1−𝐶) 𝑑𝑁

𝑁𝑓
0

𝑆𝑓
 × 𝑚         Equation (10) 

Where:  

𝐶𝑁𝑓

𝑆  : Damage growth rate based fatigue failure criterion, 

∫ (1 − 𝐶) 𝑑𝑁
𝑁𝑓

0
 : Accumulated decrease in pseudo stiffness, 

𝑆𝑓: accumulated damage at failure 

m : Unit correction factor set to 103 to increase the order of magnitude of the 𝐶𝑁𝑓

𝑆  and for simplicity 

of comparisons between different mixtures 

 

With respect to 𝐶𝑁𝑓

𝑆 , the higher 𝑆𝑓 and lower ∫ (1 − 𝐶) 𝑑𝑁
𝑁𝑓

0
 are more desirable for fatigue 

performance as they indicate that material is able to withstand higher amounts of damage with less 

disintegration.  

9.6 Comparison of the Proposed Damage Growth Rate Fatigue Criteria (CSNf) with Currently 

Available Criteria (Nf @ GR =100, DR and Sapp) 

In order to evaluate the reliability of the proposed failure criterion, the 𝐶𝑁𝑓

𝑆 versus number of cycles 

to failure (Nf) graphs were plotted for each replicate tested for the six mixtures in Figure 14. The 

direct tension cyclic fatigue is usually conducted on 4 specimens each tested at a different strain 

level. The accumulation of damage and decrease in material’s capacity due to different strain levels 

is significantly non-linear which can result in wide ranges Nf value as can be seen in the figure. 

The results indicate a linear relationship in arithmetic scale between the proposed failure criterion 

and number of cycles to failure at each level of strain which eliminates the possible errors of the 

extrapolation that may occur in a logarithmic based relationship. In general, With respect to the 

graphs and definition of 𝐶𝑁𝑓

𝑆 a lower slope of the fitted trend line between different mixtures is 

more desirable. For the purposes of simplicity in applying the 𝐶𝑁𝑓

𝑆 for comparing the mixtures’ 

performance, a threshold parameter as 𝑁𝑓@𝐶𝑁𝑓

𝑆 = 100  is suggested to be used in this study. This 



www.manaraa.com

 

41 
 

threshold parameter has been able to differentiate the mixtures performance with respect to field 

data. However, more investigations is required to confirm that this threshold is applicable to all 

types of mixtures and traffic levels.  The ranking order from all the available failure criterions with 

respect to field performance is presented in Table 11. According to the rankings the 𝑁𝑓@𝐶𝑁𝑓

𝑆 =

100 parameter has been able to rank all 6 mixtures, while other parameters such as  Nf @ GR =100 

and Sapp have only predicted the worst mixture’s performance among others. The results from the 

comparisons indicate the robustness of the newly proposed fatigue failure criteria in discriminating 

the mixtures performance with respect to normalized field crack length in 5 years after 

construction. It is worth mentioning that although a parameter such as 𝐷𝑅 has not been able rank 

a mixture’s performance, this parameter has been previously indicated to be a useful tool in 

discriminating the general properties of the mixtures with respect to production method and overall 

performance [26].   

 

 

Figure 14. 𝑪𝑵𝒇

𝒔 versus Nf plots 

Table 11. Mixture ranking order in accordance to different failure criterion 
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Although the mixture ranking is an important tool to discriminate the mixtures’ performance, the 

statistical and mathematical correlation between the developed index parameter and the field data 

should be evaluated to examine if the parameter is capable of determining the order of magnitude, 

if different, between mixtures. For this reason, the normalized fatigue crack lengths were plotted 

versus the 𝑁𝑓@𝐶𝑁𝑓

𝑆 = 100 parameter to determine the statistical correlation in terms of the R2 

goodness of fit parameter for the data. As it is shown in Figure 15, a power function fit with an 

R2=0.73 was fitted to the data. The power function fitting is presumed to be suitable for fatigue as 

it can more realistically describe the boundary conditions of the crack length while it also can help 

in determining the appropriate threshold Nf value for a specific project during a performance based 

mixture design phase. Also, The power function has similar format as fatigue endurance limit 

where very poor mixtures have a very low Nf at the proposed threshold and similarly there is an 

asymptotic form for very good performers having infinite fatigue life. 

 

Figure 15. Statistical correlation between the field cracking length and the proposed fatigue 

criterion 

9.7 Evaluation of the Study Mixtures through the Proposed Failure Criterion 

Figure 16 indicates the results from evaluation of the study mixtures (c.f. Table 2) through the 

proposed fatigue failure criterion. Similar to the results from 𝐷𝑅 and 𝐺𝑅 criterions as indicated in 

paper1-chapter4, ARGG-1 has a better performance compared to ARGG-2. However, with respect 

to other wearing course mixtures, the ranking is different such that W-7628H-12.5 is shown to 

have the best performance followed by W-5834L and W-6428H-9.5. With respect to intermediate 

and base course mixtures, 𝐶𝑁𝑓

𝑆  ranks B-6428H as a better mixture compared to BB-6428L while 

the inverse ranking had been observed from both 𝐷𝑅 and 𝐺𝑅 criterions.  
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Figure 16. Proposed (𝑪𝑵𝒇

𝒔 ) fatigue failure criterion against number of load repetitions to 

failure (Nf) plots for the study mixtures. 

9.7.1 Evaluating the Field Performance of the Study Mixtures through New Fatigue 

Cracking Performance Criteria 𝐶𝑁𝑓

𝑆  

In order to further evaluate the applicability of 𝐶𝑁𝑓

𝑆 to different types of cross sections with different 

amount of traffic levels, a set of 6 wearing course mixtures from the study mixtures were selected 

for more detailed evaluation. The mixtures have been used in different construction projects with 

different levels of traffic in New Hampshire and the field distress data for several years after 

construction are available for them. It needs to be mentioned that selection of these mixtures and 

cross sections has been based on availability of data for analysis at the time of performing this 

research and further analysis will on other cross sections will be conducted as a future work. Using 

equation 8, the normalized field crack lengths have been plotted in Figure 17. Since the cross 

sections, traffic volume and weather situations have been different for these projects, the area under 

the curves normalized by the squared time after construction was used to unify the cracking 

performances for different mixtures as shown in Figure 18. This method of normalizing field 

cracking performance form different pavement sections has been developed and validated by 

previous work by Dave et al. 2016 [28]. As it is demonstrated in Figure 18, a power function fit 

has resulted in a very good correlation (R2=0.80) between the fatigue index parameter and the 

amount of field cracking for different mixtures. These observations reaffirm the reliability and 

usefulness of the proposed fatigue failure criterion to be used as an indicator for the structural 

contribution of the mixtures in the pavement design.  
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Figure 17. Normalized field crack length for different mixtures in terms of meter per 

kilometer 

 

Figure 18. Normalized field fatigue cracking performance versus proposed fatigue failure 

threshold (𝑵𝒇@ 𝑪𝑵𝒇

𝑺 = 𝟏𝟎𝟎). 

9.7.2 Evaluating the Laboratory Performance of the Study Mixtures through 

Different Failure Criteria 

In order to evaluate and rank the mixtures’ laboratory performance, the analysis was performed 

using the existing and newly developed fatigue failure criteria to compare the results between 

different parameters. Figure 19 indicates the normalized results determined through different 

parameters. As it can be seen from the figure, each parameter has resulted in a different order of 

ranking compared to others as well as the ranking with respected to the field conditions which was 

previously shown in Figure 18. For example, the W-7034PH-12.5 mixture is shown to be best by 

by 𝑁𝑓@𝐺𝑅 = 100 and 𝐷𝑅parameters while it is indicated to be worst by 𝑁𝑓@𝐶𝑁𝑓

𝑆 = 100 parameter. 

Table 12 indicates the mixture ranking with respect to different failure criteria for the evaluated 
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mixtures. The results from comparisons indicate that 𝑁𝑓@𝐶𝑁𝑓

𝑆 = 100 is a better discriminating 

among other parameters.  

 

Figure 19. Comparison of asphalt mixture laboratory performance using different failure 

criteria (for each criteria best performing mixture is used as normalizing factor). 

 

Table 12. Mixture ranking order in accordance to different failure criterion 

Ranking with respect to different parameters (1;best , 6 worst) 

Mixture 
Field Rank    

(5years after 

construction) 
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𝑆
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𝑁𝑓@𝐺𝑅 = 100 𝐷𝑅 𝑆𝑎𝑝𝑝 
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9.8 Summary and Conclusion 

There are currently three fatigue failure criterion that are commonly used to evaluate fatigue 

performance of asphalt mixtures that are tested through direct tension cyclic fatigue testing method 

and the S-VECD theory. However, because of the challenge of using logarithmic scale in defining 

𝐺𝑅, insensitivity of 𝐷𝑅 to the amount of damage growth prior to crack localization, and lack of 

𝑆𝑎𝑝𝑝 parameter in appropriately ranking mixtures as per field performance (as shown in this 

chapter), there is a need for a stand-alone fatigue threshold that can be reliably used to rank field 
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performance. Therefore, a new failure criterion called as 𝐶𝑁𝑓

𝑠 was developed and investigated. This 

criterion incorporates three components of the S-VECD theory (∫ (1 − 𝐶) 𝑑𝑁
𝑁𝑓

0
, 𝑁𝑓 and 𝑆𝑓) to 

capture the mixture’s disintegration with respect to damage growth rate.  In order to use this 

parameter for a given mixture, the 𝐶𝑁𝑓

𝑠 is calculated for each tested replicate (minimum of two 

strain levels are required) and the results are plotted versus the number of cycles to failure (𝑁𝑓). 

An index parameter called as 𝑁𝑓@𝐶𝑁𝑓

𝑆 = 100 is determined for ranking purposes of different 

mixtures. The evaluations of the new parameter were conducted through investigations of two 

different set of mixtures (each set combined of 6 mixtures) for which the field distress are available 

and 𝐶𝑁𝑓

𝑠 indicated to be able to reliably rank the mixtures. The parameter indicated that it is not 

only able to rank the mixtures but it also has a high correlation with the magnitude of cracking in 

the field. Therefore, as a future step in this research this index can be used to determine the 

appropriate threshold value to be used in a performance engineered based mixture design 

approaches. 
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10.  Methodology to Develop the Layer Coefficients for 

AASHTO 1993 Design Approach 
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10.1 Introduction 

Although a mechanistic pavement design approach which can precisely predict the evolution of 

distresses during the service life is considered as the ultimate goal in the pavement design system, 

the transition from a purely empirical based design approach to a mechanistic based design may 

take decades required for generating reliable database and transfer functions. While some state 

highway agencies have been pioneer in accepting a mechanistic-empirical pavement design 

approach, many others are still using the AASHTO 1993 empirical design approach as the 

available pavement design and performance database and engineering experience gained from 

using this approach keeps it as a simple yet reliable tool for the pavement design.  

As discussed in chapter 2, one of the main inputs of the AASHOT 1993 design equation is the 

layer coefficients (a-values) that are used to quantify the structural contribution of the material in 

the pavement structure. The original layer coefficients within the current AASHTO 1993 design 

equation is based on statistical regression analysis from AASHO road tests and the layer 

coefficients of various pavement layers are functions of traffic level, weather conditions, subgrade 

soil modulus and level of reliability at the time of the AASHO road test in early 1960s. However, 

due to the improvements in material properties and production, quality control as well as 

construction techniques, many state agencies have tried to reevaluate and update their layer 

coefficients to accommodate these improvements.  

Different approaches have been investigated and implemented by researchers and practitioners to 

update the layer coefficients (also known as, structural coefficients) for the asphalt concrete 

pavement layers within AASHTO 1993 empirical pavement design system. In this chapter of the 

thesis, the main aim would be to develop a generalized methodology to develop mechanistic 

performance incorporated layer coefficients for asphalt mixtures and for this reason, the 

performance index parameters for rutting (paper 4 chapter 7), transverse cracking (paper 5 chapter 

8) and fatigue cracking (chapter 9) that were previously developed in this research will be used as 

the primary material inputs in development of layer coefficients. It should be mentioned that in the 

original AASHO road test and layer coefficients the pavement rutting was only considered to be 

due to plastic deformation of the subgrade soil, however, it is well-known that part of the overall 

rutting could result from the asphalt mixtures and for this reason, the mixtures’ rutting performance 

will be incorporated in development of layer coefficients in this research. 

The layer coefficient, as an indicator of structural contribution of each layer, may not be a constant 

value for a pavement structure during its design life as material properties and climatic conditions 

are ever changing, resulting in different overall pavement response, possible even in relatively 

small time interval of a day. As a result, determining a continuously evolving layer coefficient, 

might be a significantly challenging task. Moreover, the establishment of a direct correlation 

between the performance index parameters such as the ones reviewed and developed in this 

research and layer coefficients, may not be appropriate since the resulting layer coefficients will 

be solely dependent on the material properties which ignores other effective variables in 

determining a realistic layer coefficient. As a result, it is necessary to incorporate the field distress 

conditions in development of layer coefficients to account for other types of variables such as 

traffic level and climatic circumstances. Therefore, among different types of distress index 

parameters such as PSI, PCI and etc. in this research the International Roughness Index (IRI) as a 



www.manaraa.com

 

49 
 

standardized distress index parameter was selected to be used as the primary tool in evaluating the 

field distress data. Although the pavement functionality measures such as IRI include different 

types of non-structural degradation such as raveling, potholes etc. a significant portion of them is 

related to structural distresses such as rutting and cracking. In addition, among the available 

functional distress index parameters, the IRI is more popular since it is measured by a standard 

vehicle’s accumulated suspension motion and therefore it is less affected by external variables 

such as visual observations that can reduce the reliability of a functional distress index parameter. 

Moreover, there are different regression based equations that relate IRI to PSI which is one of the 

variables in the AASHTO 1993 equation. Besides, many state highway agencies such as NHDOT 

gather yearly IRI data for different highways as part of their pavement management system.  

To fulfill the third objective of this dissertation, this chapter will mainly focus on development of 

layer coefficient for wearing course mixtures introduced in Table 2 as the distress data is only 

measured on the wearing course. Using the New Hampshire Pavement Management System data 

base, the field distress data for a set of 17 cross sections which have been constructed by similar 

mixtures to the ones in this research were investigated and utilized to develop the layer coefficients. 

As a final product in this chapter, through incorporating the performance index parameters with 

the field distress based back-calculated layer coefficients, a set of new layer coefficients called as 

performance incorporated a-values will be developed and proposed to be used at different levels 

of reliability. 

10.2 Resilient Modulus Based Layer Coefficients 

A series of laboratory testing including resilient modulus (ASTM D7369), complex modulus 

(AASHTO T 342), direct tension cyclic fatigue (AASHTO TP 107), semi-circular bend (AASHTO 

TP 124) and disk-shaped compact tension (ASTM D7313) were conducted to characterize the 

mixtures in the lab. The detailed information of the testing condition and results are provided in 

chapter 3 as well as appendix 2 of this thesis. As mentioned earlier in section 2.4.4, the resilient 

modulus has been conventionally used to back-calculate the layer coefficients of asphalt mixtures 

through Equation 11. For this reason, it was decided to first explore use of this equation to 

determine layer coefficients for the study mixture (Table 2) prior to incorporating the distress data 

and other laboratory test results in development of layer coefficients. The results are plotted in 

Figure 20. As expected from the resilient modulus based a-value equation, the stiffer mixtures with 

higher resilient modulus have higher layer coefficient values whereas most of the wearing course 

mixtures such as W-7034PH, W7628H-9.5 and W-5834L as well as the cold mixtures are indicated 

to have a relatively lower a-values. The results reveal the fact that resilient modulus alone may not 

be an appropriate tool to determine the layer coefficients of asphalt mixtures as some polymer 

modified mixtures such as W-7034PH with a comparable fatigue performance and relatively better 

transverse cracking performance compared to many other wearing courses in this study has the 

lowest resilient modulus based a-value.  

ai = 0.4 log(Mr)-0.951             Equation (11) 
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Figure 20. Resilient modulus based layer coefficients 

10.3 Field Distress Data Analysis 

As one of the important steps in evaluating the structural contribution of the mixtures in form of 

layer coefficients, it is necessary to assess the field distress data of the study mixtures (Table 2) 

after construction. However, at this point of time in this research, there is no considerable field 

data available for the study mixtures as they have been placed during 2016, 2017 and 2018 

construction season. For this reason, a set of yearly measured distress data including IRI, rutting, 

fatigue and transverse cracking for similar mixtures to those tested and analyzed in this dissertation 

were provided by the New Hampshire Department of Transportation from their pavement 

management system. Similar mixtures in this work are defined as those that have same NHDOT 

mixture designations, that is, same application (wear, binder or base course), NMAS, gyration 

level, recycled binder amount and binder PG grade. 

Due to the aforementioned reasons, among different types of distress data, the International 

Roughness Index (IRI) was selected for further evaluations and development of layer coefficients. 

A total of 17 cross sections were investigated and the average yearly IRI values were plotted versus 

the pavement service time. The distress measurements are available only for a maximum of 5 years 

after construction for different mixtures and cross sections. However, the investigations indicated 

that at least for the first 5 years after construction, the yearly increase of the IRI has been following 

a linear trend for almost all of the mixtures and cross sections. While it is acknowledged that there 

is likelihood that the life-time IRI performance trends will not be linear in shape and will most 

likely follow an “S” shaped response, due to limitations of data availability in NHDT’s PMS, this 

dissertation used linear shape. Furthermore, use of linear shape is expected to have a more severe 

deterioration rate and thus can provide some added reliability in the analysis.  With use of linear 

fitting of IRI with time, the field IRI values after 20 years in service were determined for each 

cross section separately. It is well known that the initial IRI values immediately after construction 

can vary significantly among different cross sections with similar traffic and climatic situations 

due to differences in the construction quality as well as the conditions of the underlying layers. 

Also the increasing trend of the IRI right after construction up to the first year may not necessarily 

follow the trend after the first year and beyond. Nonetheless, determination of initial IRI 

immediately after construction is important as it translates into the Initial Serviceability (Pi) value 

for use in the AASHTO 1993 design process.  The initial serviceability is deducted from the 
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Terminal Serviceability (Pt) to obtain the ΔPSI value as the allowable serviceability loss at the end 

of design life. As described in section 2.2.3, ΔPSI is a key input in the AASHTO 1993 design 

equation which can significantly affect the layer coefficient back calculation using the field data.   

Research performed by Al-Omari [29] investigated the correlation between IRI and PSI using 

distress data of over 370 cross sections including flexible, rigid and composite pavements from 6 

different states such as Indiana, Louisiana, Michigan, New Mexico, New Jersey and Ohio. The 

results indicated that IRI and PSI were found to be highly correlated (R2 =0.81) and their 

relationship can be described using a nonlinear model. Equations (12) and (13) indicate the 

relationship between IRI and PSI for flexible pavements. 

𝑃𝑆𝐼 = 5𝑒(−0.0038∗𝐼𝑅𝐼)          Equation (12) 

Where IRI is in inches per mile 

𝑃𝑆𝐼 = 5𝑒(−0.24∗𝐼𝑅𝐼)          Equation (13) 

Where IRI is in meters per kilometer 

Considering the nature of the power function type of equation, the initial serviceability can 

significantly vary based on the initial IRI value. However, an initial value of 52 inches per mile is 

considered to be acceptable [30]. Base on this value, it was decided to divide the quality of the 

construction and initial IRI values into three categories. These categories are defined based on the 

construction quality and measured field IRI values at one year after construction. Table 13 

indicates these categories and their criteria. As it can be seen from the table when the first year IRI 

is above 55 inch/mile the extrapolated IRI from the linear fit will be used to determine the initial 

IRI and consequently Equation 9 will be used to determine the Pi. However, when IRI is below 45 

a fix Pi value of 5 and when IRI is between 45 and 55 inch/mile a fixed Pi value of 4.5 will be used 

for the analysis. With respect to AASHO road test and AASHTO 1993 pavement design approach 

for flexible pavements, the Pi value is usually considered to be 4.2 as an average initial 

serviceability. However, this is a generic value and may not be appropriate to be used when actual 

project data are available. In addition, with respect to Equations 12 and 13 when IRI is equal to 

zero the PSI will be equal to 5 and for small changes in IRI the PSI will have major reductions due 

to the power nature of the functions. For this reason different ranges of the construction quality 

were taken into account to mitigate the art effect of the power function in the analysis. 
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Table 13. Defining the initial serviceability value based on construction quality and IRI 

values one year after construction. 

Construction quality 

Range of field IRI, 

one year after 

construction 

(inch/mile) 

Assumption of 

Initial Serviceability 

(Pi) 

Remarks 

High IRI < 45 5 - 

Medium 45 ≤ IRI ≤ 55 4.5 - 

Low IRI > 55 Varied 

Use the extrapolated 

linear fit from the 

measured IRI values 

to determine the 

initial IRI and back-

calculate PSI using 

Equation 12 

 

Figure 21 indicates the increase of IRI with time after rehabilitation for different mixtures that are 

placed on different projects in New Hampshire. The first point for each mixture and project is 

related to the IRI after one year of construction. As it can be seen from the figure, the mixtures 

with smaller aggregate size (indicated in Figure 21 (c)) generally have a higher IRI in the first year 

whereas the ARGG mixtures (Figure 21(a)) which are relatively stiffer compared to rest of the 

mixtures have lower IRI values. It should be noted that in general the IRI measurements are better 

correlated with rutting rather than cracking since even minor rutting results in deflections along 

the roadway while minor or medium cracking may not indicate high deflections. Therefore, it 

might be necessary to directly incorporate the cracking performance in the back-calculated layer 

coefficients from the field data.  
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Figure 21. IRI versus time for different mixtures and projects: a) ARGG mixtures, b) 

12.5mm NMAS mixtures, c) 9.5 mm NMAS mixtures. 

10.4 Back-Calculation of Layer Coefficients from Field IRI measurements 

In order to back-calculate the layer coefficients from the field IRI measurements, it is essential to 

have the cross section and traffic information of the road sections where mixtures similar to ones 

in this research are placed. The pavement management data provided by NHDOT included the 

original pavement cross sectional information as well as the method and thickness of the overlays 

using mixtures with similar characteristic to the study mixtures. The traffic information were 

gathered using the NHDOT online transportation data management system [31]. This GIS based 

online tool provides a comprehensive traffic information including the annual average daily traffic 

as well as truck percentage for different roadways within the state. After analyzing the traffic data, 

the total design traffic in terms of equivalent single axle load (ESALs) was calculated for each 

cross section for 20 years after reconstruction or major rehabilitation. Since not all the structural 

design information of the pavements were available, some general assumptions were made and 

applied to all the cross sections regardless of the type of road, to facilitate the back-calculation of 

layer coefficients through the AASHTO 1993 design equation. These assumption are summarized 

in Table 14. It should be pointed out that IRI provides the amount and severity of distresses of the 

surface layers only and there is no direct information about the type and magnitude of distress 

originating from the underlying layers, if any. However, with respect to general functionality of 

binder and base course asphalt mixtures and considering that these type of mixtures are usually 

used to improve the load bearing capacity of the pavement structure through improving the rutting 
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susceptibility due to their relatively higher stiffness, it can be reasonably concluded that a stiffness 

based  layer coefficient such as the ones determined through resilient modulus in Figure 20 can be 

used to indicate the structural contribution of such mixtures in the pavement. Therefore, in back-

calculating the layer coefficients of wearing course mixtures from the field data, the layer 

coefficients of binder and base course mixtures will be based on resilient modulus only. However, 

the performance based a-values for these types of mixtures should be explored using the approach 

developed in this research.  Through the process of back-calculations, the layer coefficients of the 

granular material are based on the values that are conventionally used by the NHDOT pavement 

design approach [32]. Also, the subgrade soil resilient modulus is a typical average modulus value 

in New Hampshire which is determined based on the research conducted by Janoo in 1994 [32]. 

The level of reliability is selected such that it includes almost all the roadway categories with 

respect to their functionality. 

Table 14. General design assumptions to back-calculate a-values from field data 

Design 

Reliability 

Standard 

deviation 

z-

statistic 
Actual ΔPSI 

Resilient 

Modulus 

of the 

subgrade 

soil (psi) 

Traffic 

(ESALs) 

Layer coefficients 

for granular 

material 

Layer 

coefficient for 

binder and 

base course 

asphalt 

mixtures 

95% 0.45 -1.645 

Varied among 

the sections 

based on 

back-

calculations 

from 

Equation (10) 

8000 

Varied 

among 

the 

sections 

based on 

the 

location 

Cold recycled 

mix=0.22 

Crushed stone=0.14 

Crushed 

gravel=0.10 

Gravel=0.07 

Sand=0.05 

Back-

calculated 

from resilient 

modulus from 

Equation (3) 

 

Table 15 summarize the layer coefficients of the hot mixed binder and base course mixtures. 

However, since there are multiple types of binder course mixtures used in New Hampshire, each 

with a varying layer coefficient, it is important to determine what layer coefficient value should 

be used for these mixtures within a given pavement structure. For this reason, a binder performance 

grade categorizing based map (Figure 22) provided by the NHDOT was utilized to determine the 

proper binder course mixture for a specific project with respect to its location in the state of New 

Hampshire.  

Table 15. Resilient modulus based layer coefficients of the hot mixed binder and base 

course mixtures  

Mixture B-6428H B-5834L B-5828H BB-6428L 

Layer coefficient 0.46 0.32 0.39 0.42 
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Figure 22. Binder performance grade specification map for New Hampshire 

For a given cross section and a wearing course mixture, once all the required data in Table 14 is 

provided, the overall structural number (SN overall) based on the back-calculated ΔPSI value can be 

determined using the AASHTO 1993 design equation. Then, the structural number of the granular 

material as well as other base and binder course asphalt mixtures can be simply determined through 

Equation 2 (Chapter 2) by using their thickness and layer coefficients. This structural number is 

related to all the non-wearing course material and is called SNnon-wearing. The structural number of 

the wearing course asphalt mixtures (SNwearing) can be determined through Equation (14) and the 

layer coefficient of the wearing course mixtures can be determined using Equation (15). 

SNwearing = SNoverall – SNnon-wearing       Equation (14)  

𝑎 − 𝑣𝑎𝑙𝑢𝑒 =
𝑆𝑁𝑤𝑒𝑎𝑟𝑖𝑛𝑔

𝑊𝑒𝑎𝑟𝑖𝑛𝑔 𝑐𝑜𝑢𝑟𝑠𝑒 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠
       Equation (15) 

The following flowchart (Figure 23) is used to summarize the procedure of back-calculation of 

wearing course layer coefficients. As it is shown in the flowchart, the first step is to fit a linear 

function to the distress measurements which will result in determining the initial (right after 

construction) and terminal (20 years after construction) IRI values. The conditions to determine 

the initial IRI value will be based on the magnitude of IRI in the first year after construction as 

described in Table 13. Once the initial and terminal IRI values are determined the initial and 

terminal serviceability values (Pi and Pt respectively) can be determined using either equation (12) 

or (13) depending on the units of IRI. Once these values are determined the ΔPSI as one of the 
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inputs in AASHTO 1993 design equation can be determined. The other input variables are assumed 

based on the values provided in Table 14. The back-calculations from this equation will result in 

the overall structural number (SNoverall) value which includes all types of materials in the cross 

section. In order to determine the structural number of the non-wearing course materials, the layer 

coefficients of the granular and non-wearing course asphalt mixtures determined from Table 14 

and Table 15 respectively. Ultimately, the layer coefficient of the wearing course is determined 

through dividing the SNwearing by the thickness of the layer.  

 

 

Figure 23. Flowchart to back-calculate the layer coefficients from field IRI data 

Table 16 indicates the back-calculated wearing course layer coefficients from the field IRI data 

(aIRI-value) using the aforementioned approach. According to the table, ARGG-2 has an 

extraordinary high a-value compared to rest of the mixtures. This mixture has previously been 

indicated (Appendix 1- Paper 1- Chapter 4) to have a higher modulus value compared to rest of 

the wearing course mixtures except for W-7628H-12.5 mixture. However, both ARGG mixtures 

in this study have much lower phase angles values compared to all others including the binder and 

base course mixtures. The high stiffness and flexibility (and simultaneously a low creep 

deformation potential) of these mixtures which is associated to the crumb rubber could have 

resulted in their outstanding performance considering the high traffic volume of the projects where 

they have been placed. In general, based on field IRI data, all of the mixtures with an average layer 

coefficient value of 0.58 are indicated to have a considerably higher layer coefficient compared to 

the original value of 0.38 that is currently being used by the NHDOT pavement design manual. 

Although in most cases, a similar mixture from different project sites (if applicable) have a 

relatively close a-values, there are some cases such as ARGG-2, W-5828L, and W7628H-12.5 
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where the a-values from different projects are significantly different. Closer inspection of the 

pavement sections in these cases indicated that this could be a result of an overly designed granular 

base or difference between the assumed subgrade soil resilient modulus and actual modulus value. 

Since the actual design data is not available for every single project, it is not possible to definitively 

conclude the effects of subgrade modulus. Due to presence of instances where a-values for a mix 

type varied significantly, a one tailed t-test was conducted and based on the average and standard 

deviation of the whole dataset (all mixtures and all pavement sections), layer coefficients at two 

levels of reliability for all wearing courses (85% and 90%) used by NHDOT are suggested for the 

pavement design purposes based on IRI data. Based on the statistical analysis the suggested layer 

coefficients are 0.43 and 0.39 for 85% and 90% reliability levels respectively. It is important to 

note that based on the laboratory as well as field performance of ARGG mixtures and considering 

their significantly different production methods, they can be reasonably separated from other 

wearing course mixtures. Table 17 indicates the average layer coefficients, as well as layer 

coefficients at different levels of reliability for ARGG and non-ARGG wearing course asphalt 

mixtures. The results from separating ARGG mixtures from the rest of the wearing course mixtures 

indicate that an a-value of 0.43 at 90% reliability level can be used for non-ARGG mixtures 

whereas this value would be 0.41 for ARGG mixtures due to the higher standard deviation in these 

types of mixtures. 
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Table 16. Back-calculated layer coefficients from the field IRI data 

Mix Project 
Traffic 

(ESALs) 
Pi Pt ΔPSI SNoverall  SN non-surface SNsurface aIRI-value 

ARGG-1 
Epping 5,344,563 5.0 3.6 1.4 4.919 3.789 1.130 0.56 

Seabrook 3,741,194 5.0 3.3 1.7 4.431 3.610 0.821 0.55 

ARGG-2 
Bow-Hooksett 3,741,194 5.0 4.0 1.0 5.096 3.525 1.571 1.05 

Spaulding turnpike 3,343,302 5.0 3.7 1.3 4.764 3.692 1.072 0.71 

W-6428H-12.5 
Milford-Amherst 

(NH101) 
4,489,433 5.0 3.5 1.5 4.701 4.014 0.687 0.46 

W-5828L 

Woodstock-

Lincoln (I-93 NB) 
823,063 5.0 3.9 1.1 3.903 2.713 1.190 0.40 

Bethlehem 411,531 4.5 3.4 1.1 3.350 2.490 0.860 0.57 

W-5834L Pittsburg  (US3) 328,500 4.5 3.2 1.3 3.130 2.560 0.570 0.46 

W-7628H-12.5 

Hudson-Windham 

- (Park Ave) 
1,624,854 4.5 3.5 1.0 4.570 2.547 2.023 0.67 

Lebanon NH120 2,338,169 3.7 1.9 1.8 4.080 3.202 0.878 0.44 

W-7034PH 

Barrington 213,783 3.8 1.9 1.9 2.758 2.288 0.470 0.63 

Bethlehem-Carroll 

(US 302) 
619,969 4.5 3.5 1.0 3.756 3.288 0.468 0.62 

W-7628H-9.5 Meredith (US 3) 1,389,586 3.9 1.9 2.0 3.681 3.081 0.600 0.60 

W-5828H 

Shelburne (US 2) 383,846 5.0 4.1 0.9 3.502 2.778 0.724 0.48 

Gilford 1,192,296 3.8 1.8 2.0 3.584 3.054 0.530 0.53 

Alton 794,049 3.5 1.7 1.8 3.443 2.913 0.530 0.53 

W-6428H-9.5 Lincoln (NH 112) 300,471 4.1 3.4 0.7 3.526 2.913 0.613 0.63 

General layer 

coefficient for 

all types of 

wearing course 

mixture 

Average a-value for all wearing course mixtures (50% reliability) 0.58 

Standard deviation of the layer coefficients for all wearing course mixtures 0.15 

aIRI-value at 85% reliability 0.43 

aIRI-value at 90% reliability 0.39 
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Table 17. Layer coefficients at different reliability levels for ARGG and non-ARGG 

wearing course asphalt mixtures based on field IRI data 

aIRI-value at different 

reliability levels 

ARGG wearing course 

mixtures 

Non-ARGG wearing course 

mixtures 

50% reliability 0.72 0.54 

85% reliability 0.48 0.45 

90% reliability 0.41 0.43 

 

10.5 Incorporating the Laboratory Performance Test Results in Development of Layer Coefficients 

Although a layer coefficient developed on the basis of field performance data (such as IRI) is 

expected to have greater reliability, it may not explicitly represent the structural contribution of 

the mixtures with respect to individual structural distress types such as rutting, fatigue and 

transverse cracking due to following reasons: 

1- IRI includes functional distresses such as raveling, stripping, patching, potholes etc. which 

may not necessarily be related to structural deficiency of the asphalt mixtures. 

2- With respect to structural distresses, IRI is more correlated to rutting than fatigue and 

transverse cracking, however actual pavement service lives are controlled by first dominant 

failure, which could be fatigue or transverse cracking. 

 

Due to these reasons, it is necessary to incorporate the laboratory performance results in 

development and refining the field IRI based layer coefficients (aIRI-value). For this purpose, the 

previously developed index parameters for rutting (Paper 4-chapter 7), transverse cracking (Paper 

5-chapter 8) and fatigue cracking (chapter 9) will be statistically incorporated with the field IRI 

based a-values to develop mechanistically informed layer coefficients. To develop such layer 

coefficients, this research work undertook the following steps: 

1- Determine the individual performance index parameter value for each mixture on basis of 

laboratory performance tests. 

2- Determine the average and standard deviation of layer coefficients for all mixtures 

(including ARGG and non-ARGG wearing course mixtures) for each performance index 

parameter. 

3- Using a normal distribution function, determine the z-statistic (number of standard 

deviations from average) and level of reliability of each mixture under each performance 

index category. 

4- Using the average a-value and standard deviation of IRI based layer coefficients indicated 

in Table 16, calculate the layer coefficient for each mixture under each performance index 

category at the specific level of reliability that was determined in step 3.  
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5- Determine the performance based a-value by averaging the layer coefficients determined 

under individual performance index category for each mixture. It is acknowledged that in 

present work it is an assumption to use average of layer coefficients from each of the three 

primary structural distresses, future studies should further explore a weighted average 

approach that is based on the performance data of New Hampshire’s highways that can 

provide details on the distress modes that control the service lives. For this reason, another 

set of layer coefficients combined of minimum performance based a-values for each 

mixture is generated for investigations. 

6- Determine the average and standard deviation of the new sets of layer coefficients (both 

average and minimum layer coefficients). 

7- Select the a-value at 90% reliability as the finalized layer coefficient. 

 

Following the aforementioned steps, the levels of reliability and specific distress based layer 

coefficients as well as the averaged performance based incorporated a-values are determined and 

summarized in Table 18. 

As expected, the ARGG mixtures have the highest reliability and consequently highest a-values 

with respect to rutting index while they are indicated to have the lowest reliabilities as well as a-

values with respect to fatigue criterion. However, these mixtures reveal a medium range of 

reliability (between 30% and 50% reliability) with respect to transverse cracking. Among other 

mixtures, W-7628H-12.5 indicates a good rutting (between 50% to 70% reliability) and excellent 

fatigue (above 70% reliability) performance while having a medium performance with respect to 

transverse cracking. In general, the non-ARGG wearing course mixtures are shown to have 

medium to weak reliability (below 50% reliability) with respect to rutting and transverse cracking 

while having a good performance with respect to fatigue cracking. An averaged a-values (aave-

value) from each performance index was determined for each mixture without assigning any 

weight factor to individual a-values driven from specific distresses since at the present time it is 

assumed that all three distresses are equally important in the overall performance of a given 

mixture within the pavement structure. According to the analysis, a layer coefficient equal to 0.50 

at the reliability level of 90% can be used for all wearing course mixtures. The table also includes 

a minimum individual performance incorporated a-value (amin-value) which essentially uses the 

minimum of the three a-values determined from each index parameter (bolded in each individual 

performance based a-value column). Based on the minimum layer coefficients an a-value of 0.39 

at 90% reliability level is determined. This conservative a-value results in a thickness design that 

covers all the three distresses at the same time. It should be noted that due to the limited number 

of ARGG mixtures, separation of these mixtures from the rest of the wearing course mixtures may 

not be statistically appropriate at this point in the analysis. In other words, determination of a 

separate average index value for the two ARGG mixtures will result in constant reliability levels 

of 24% and 76% for every single index parameter which may not be realistic and appropriate. 
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Table 18. Development of averaged performance base incorporated a-values for the study mixtures 

Mixture 

Rutting Fatigue cracking Transverse Cracking 

(aave-value) (amin-value) Index 

value 

(CMRI) 

Reliability 

(%) 

a-

value 

Index value 
(𝑁𝑓@𝐶𝑁𝑓

𝑠 ×

1000 = 100) 

Reliability 

(%) 

a-

value 

Index 

value 

(RDCI) 

Reliability 

(%) 

a-

value 

ARGG-1 407.2 70 0.66 15764 29 0.50 33.64 49 0.58 0.58 0.50 

ARGG-2 905.9 99 0.97 5523 5 0.34 29.52 36 0.53 0.61 0.34 

W-6428H-12.5 194.2 37 0.53 12563 19 0.45 28.08 32 0.51 0.50 0.45 

W-5828L 190.6 36 0.53 18985 42 0.55 24.05 20 0.46 0.51 0.46 

W-5834L 138.1 29 0.50 29611 82 0.72 32.71 46 0.57 0.59 0.50 

W-7628H-12.5 353.6 62 0.63 40069 98 0.89 30.97 41 0.55 0.69 0.55 

W-7034PH 121.2 26 0.49 20301 48 0.57 65.72 99 0.97 0.68 0.49 

W-7628H-9.5 180.0 36 0.52 21815 53 0.60 36.03 57 0.61 0.58 0.52 

W-5828H 171.9 33 0.52 22104 55 0.60 22.36 18 0.44 0.52 0.44 

W-6428H-9.5 118.5 26 0.48 22237 56 0.60 35.10 53 0.60 0.56 0.48 

Average  0.58 0.47 

Standard deviation 0.06 0.06 

Layer coefficients at 90% reliability 0.50 0.39 
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10.6 Correlation of the Layer Coefficients with Mixture Properties 

As a summary up to the current point of this chapter three different types of layer coefficients are 

developed: 

1- aIRI-value: determined through the back-calculations of the filed IRI measurements 

2- aave-value: determined through averaging  the performance incorporated a-values  

3- amin-value: determined through the minimum performance incorporated a-value for each 

mixture 

In order to determine which a-value is more reasonable for the purpose of application in the 

pavement design, it is necessary to evaluate the strength of correlations between the a-values, 

mixture properties and performance index parameters. For this reason, the Pearson’s correlation 

coefficient is selected to be used to assess the correlations between these three components. In 

general the final selected a-value needs to indicate a positive correlation with the performance 

index parameters while it should maintain a reasonable correlation (either positive or negative) 

with the mixture properties.   

Table 19 and Table 20 indicate the Pearson’s correlation matrix between the mixture properties 

and performance indices along with the various a-values. As mentioned before, ARGG mixtures 

have significantly different mix properties and performance and for that reason and in order to 

better discriminate and evaluate the effect of mixture properties on a-values, separate tables were 

generated. Table 19 includes all the wearing course mixtures, and the mixture properties include 

the performance grade high temperature (PGHT), performance grade low temperature (PGLT), 

performance grade useful temperature interval (UTI), nominal maximum aggregate size (NMAS), 

asphalt content (AC), level of gyration and recycled asphalt pavement (RAP). The main 

noteworthy observations with respect to the highlighted cells of Table 19 are as follows: 

1- While aIRI-value does not reveal any significant correlations with the binder grade properties 

including PGHT, PGLT and UTI or the aggregate size, the aave-value indicates much higher 

sensitivity to these properties. However, this observation is reverse for a property such as 

AC as aIRI-value indicates a relatively high positive correlation with this property. On the 

other hand, amin-value indicates similar correlations to that of the aave-value with respect to 

binder grade properties while unlike the aIRI-value, it is negatively correlated with the AC. 

Another important observation is the insensitivity of aave-value to the AC which may be a 

result of existence of the ARGG mixtures with relatively higher binder contents in the dataset 

while their individual aave-value is notably close to the overall average aave-value which 

neutralizes the effect of binder, considering that the rest of the mixtures have close asphalt 

contents in general. 

2- With regards to correlation of different types of a-values with the developed index 

parameters in this research it is shown that the aIRI-value has an expected high positive 

correlation to the rutting index due to the relatively high correlation between the IRI and 

rutting distresses in general. However, aIRI-value is negatively proportional to the fatigue 

index. This observation confirms that aIRI-value needs to be refined through incorporating 

the lab performance tests in the analysis and as a result the aave-value is positively correlated 

to all three of the performance index parameters. On the other hand, amin-value reveals a 

reverse trend as compared to aIRI-value when considering the correlations to rutting and 

fatigue indices. Since there is negative correlation between fatigue and rutting index 

parameters, the aIRI-value and amin-value indicate negative correlations with respect to 
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fatigue and rutting indices. This is primarily associated to the ARGG mixtures’ 

performance with respect to these types of distresses in the lab.    

3- As a general conclusion with respect to Table 18 and Table 19 due to the aforementioned 

results and discussions on the correlations, the aave-value is probably a better tool to indicate 

the structural contribution of the mixtures when all types of mixtures (ARGG and non-

ARGG) are included in the analysis. However, amin-value is a more conservative selection 

which may also increase the initial construction costs while it will probably result in less 

pavement maintenance and rehabilitation costs.  
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Table 19. Correlation matrix including ARGG mixtures 

 

  

Variables PGHT PGLT UTI NMAS AC Gyration RAP 
Rutting 

index 

Fatigue 

index 

Transverse 

Cracking 

index 

aIRI-
value 

aave-
value 

amin-
value 

PGHT 1.0 - - - - - - - - - - - - 

PGLT 0.00 1.0 - - - - - - - - - - - 

UTI 0.95 -0.32 1.0 - - - - - - - - - - 

NMAS -0.18 -0.33 -0.07 1.0 - - - - - - - - - 

AC -0.38 0.34 -0.47 0.02 1.0 - - - - - - - - 

Gyration 0.42 0.38 0.28 -0.33 0.34 1.0 - - - - - - - 

RAP 0.09 0.11 0.05 0.04 -0.67 -0.40 1.0 - - - - - - 

Rutting 

index 
-0.23 0.32 -0.32 0.35 0.69 0.25 -0.18 1.0 - - - - - 

Fatigue 

index 
0.50 -0.23 0.54 -0.09 -0.61 -0.19 0.38 -0.47 1.0 - - - - 

Transverse 

Cracking 

index 

0.42 -0.67 0.62 0.15 -0.04 0.24 -0.58 -0.22 0.04 1.0 - - - 

aIRI-value 0.03 0.14 -0.02 -0.03 0.65 0.44 -0.52 0.77 -0.47 0.21 1.0 - - 

aave-value 0.56 -0.43 0.67 0.30 0.02 0.26 -0.29 0.23 0.43 0.64 0.39 1.0  

amin-value 0.61 -0.20 0.64 -0.08 -0.45 -0.06 0.13 -0.64 0.80 0.26 -0.59 0.33 1.0 
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Table 20. Correlation matrix including only non-ARGG mixtures 

Variables PGHT PGLT UTI NMAS AC Gyration RAP 
Rutting 

index 

Fatigue 

index 

Transverse 

Cracking 

index 

aIRI-
value 

aave-
value 

amin-
value 

PGHT 1.0             

PGLT 0.12 1.0            

UTI 0.94 -0.24 1.0           

NMAS -0.05 -0.45 0.11 1.0          

AC 0.05 0.30 -0.06 -0.81 1.0         

Gyration 0.60 0.33 0.47 -0.45 0.30 1.0        

RAP -0.15 0.28 -0.25 0.24 -0.65 -0.34 1.0       

Rutting 

index 
0.48 0.44 0.31 0.29 -0.50 0.16 0.56 1.0      

Fatigue 

index 
0.36 -0.11 0.39 0.14 -0.29 -0.06 0.22 0.63 1.0     

Transverse 

Cracking 

index 

0.43 -0.67 0.66 0.20 0.12 0.27 -0.72 -0.35 -0.05 1.0    

aIRI-value 0.61 -0.01 0.61 -0.48 0.71 0.60 -0.80 -0.18 0.10 0.63 1.0   

aave-value 0.67 -0.47 0.83 0.29 -0.18 0.24 -0.31 0.33 0.68 0.67 0.52 1.0  

amin-value 0.78 -0.15 0.81 0.14 -0.16 0.10 0.03 0.53 0.78 0.28 0.39 0.8 1.0 
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In context of correlations for wearing course mixture without ARGG in the population (shown in 

Table 20), following key observations can be made: 

1- All three a-value types (aIRI, aave and amin) indicate similar correlations regarding the binder 

grading properties with exception of amin-value which is nearly insensitive to the PGLT. 

The table indicates that the aave-value and amin-value have uncommon correlation directions 

with NMAS and AC such that mixtures with larger aggregate size and lower asphalt 

content have higher a-values. However, the prevailing effect of binder type and properties 

which results in a relatively better of these mixture should be taken into consideration.  

2- The elimination of the ARGG mixtures from the database resulted in improved correlations 

with respect to direction and magnitude of the correlations between all three types of a-

values with fatigue and cracking index. Also, both of the aave-value and amin-value indicate 

higher positive correlations with the rutting index for non-ARGG mixtures. However, the 

aIRI-value indicates a negative correlation with the rutting index which reaffirms the 

necessity of incorporating performance based indices in development of a reliable a-value. 

3- As a general conclusion with respect to Table 18 and Table 20, considering the previous 

discussions, both of the aave-value and amin-value based layer coefficients can be reasonably 

used for the pavement structural design and the selection of the proper a-value should be 

based on the level of importance and reliability of a specific project.  
 

Based on the discussions in this section a summary for the aave-value and amin-value for non-ARGG 

mixtures is provided in Table 21. 
 

Table 21. aave-value and amin-value for non-ARGG mixtures 

a-value  
Level of 

reliability 

Non-ARGG 

wearing course 

mixtures 

aave-value 
50% reliability 0.58 

90% reliability 0.48 

amin-value 
50% reliability 0.49 

90% reliability 0.44 

 

10.7 Mixture Property Based Predictive Model for Layer Coefficients 

In many instances and due to the limitations in time and laboratory equipment as well as the 

unavailability of field distress data, it may not be possible to determine an accurate performance 

incorporated layer coefficient for the pavement design. Therefore, a predictive model based on 

nominal properties of the mixtures can help mixture and pavement design engineers to have an 

acceptable level of estimation of the structural contribution of the mixtures within the pavement 

structure. For this reason, the database created in this thesis in terms of mixture properties and 

layer coefficients are used to develop a simple model to predict the performance incorporated layer 

coefficients (aave-value) for all the wearing course mixtures including ARGG and non-ARGG 

mixtures used in New Hampshire.  
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In order to develop the model, the nominal mixture properties including PGHT, PGLT, NMAS, 

AC, gyration level, and RAP content were selected as the initial variables in the model. These 

parameters are readily available before the mixture design and can help the design engineers with 

an initial estimation of the structural contribution of the mixture in the pavement system.  A second 

degree factorial variable selection was performed to determine the significance of possible two-

way interactions in the model. To build the model, the stepwise regression analysis was utilized to 

determine the influential mixture properties and two-way interactions on the aave-value at 0.25 

significance level which is equal to 75% confidence interval. This level of significance was 

determined through performing trial and error efforts to determine what level can result in the best 

possible fit for the available data. However, it should be noted that this level of significance can 

change based on the level of accuracy and importance of the project.  Table 21 indicates the terms 

and resultant statistics of the developed model. The lower p value and higher t-ratio indicate the 

significance of the variable in the prediction equation. As it can be seen the PGHT with the lowest 

p-value and the NMAS with the highest p-value are the most and least significant variables in the 

models. Although the p-value for NMAS is higher than the threshold value of 0.25, its interaction 

with the PGHT is a significant and for that reason NMAS is kept in the model. The results from 

the prediction are indicated in Figure 24. A strong correlation close to the line of equality is 

achieved through the developed model. In using any predictive equation including the one 

provided in this section, it is important to consider the constraints of the variables in terms of the 

input value as not every single value may result in a reasonable prediction. Also, as this predictive 

equation results in the aave-value (50% reliability level) it would be necessary to increase the level 

of reliability by calculating the layer coefficient at an increased reliability level by using a standard 

deviation of 0.06 (determined from Table 22) depending on the importance of a given design 

project. 
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Table 22. Prediction model for aave-value  

Term 

Statistics 

Estimate 
Standard 

Error 
t-Ratio Prob>|t| 

Intercept -1.09659 0.25611 -4.28 0.0505 

PGHT 0.011663 0.00177 6.61 0.0222 

PGLT -0.017115 0.00415 -4.13 0.054 

NMAS (mm) 0.000691 0.00618 0.11 0.9212 

AC% 0.100468 0.02156 4.66 0.0431 

Gyration level -0.003087 0.00133 -2.33 0.1453 

RAP% 0.002695 0.00158 1.71 0.2294 

(PGHT-64)*(NMAS-11.6) 0.004462 0.00103 4.33 0.0494 

 

 

Figure 24. Nominal property based predicted aave-value for all the study surface mixtures 
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10.8 Summary, Conclusion and Future Work 

This chapter of the thesis aimed on combining the developed rutting, fatigue and transverse 

cracking index parameters (chapters 7, 8 and 9 respectively) to evaluate the structural contribution 

of wearing course mixtures (Table 2) in New Hampshire highways. Since many state highway 

agencies including New Hampshire are still using the AASHTO 1993 empirical equation as their 

primary pavement design approach, this method was selected to evaluate the mixtures in this 

research. The AAHTO 1993 design equation uses the structural layer coefficients (a-values) to 

quantify the material’s properties and their contribution to the pavement load bearing capacity. 

Therefore, a methodology was developed to update the layer coefficient values for the wearing 

course mixtures used in New Hampshire. The procedure of development and evaluation of layer 

coefficients included investigating the field distress data of 17 cross sections that have been 

constructed with the study mixtures that are shown in Table 2. The main evaluated distress data 

was selected to be the International Roughness Index (IRI) as it is a standardized distress index 

parameter and can be an indicator of the combined effect of multiple distress types such as rutting 

and cracking. Also through the available equations in the literature, it would be feasible to convert 

IRI to present serviceability index (PSI) that is one of the primary inputs in the AASHTO 1993 

design equation. For each cross section, a back-calculation analysis was conducted to determine 

the required structural number (SNoverall) of the pavement in accordance to traffic level and IRI 

measurements. On the other hand, another structural number (SNnon-wearing) based on the available 

cross sections was determined. The difference between these two types of structural numbers 

results in the structural number of the wearing course mixtures which when divided by the 

thickness of the wearing course results in the back-calculated layer coefficients of the mixtures 

based on IRI data which is denoted by the aIRI-value. Using a standard normal distribution function 

the aver gage and standard deviation of the aIRI-value was calculated for the whole dataset. Since 

the aIRI-value is primarily based on IRI analysis it is necessary to incorporate other types of 

performance based test results in the back-calculated layer coefficients. For this reason, the three 

performance index parameters including rutting (paper 4 chapter 7), transverse cracking (paper 5 

chapter 8) and fatigue (chapter 9) were calculated for each mixture separately and their level of 

reliability was determined through a standard normal distribution for each index parameter. Using 

these levels of reliabilities along with the average and standard deviation of the aIRI-value, three 

individual performance index incorporated a-values were determined for each mixture. The 

average of the three layer coefficients resulted in the aave-value for each mixture. Also using the 

minimum of three performance incorporated layer coefficients for each mixture a set of amin-values 

were determined for the study mixtures.  

In order to determine which type of a-value (aIRI-value, aave-value and amin-value) can best represent 

the structural contribution of the mixtures, the Pearson’s correlation matrix was used to examine 

the strength and reasonability of the correlations between the mixture properties and index 

parameters with the three types of layer coefficients. The analysis indicated that aave-value for all 

types of mixtures can be a better tool for the pavement design purposes. However, the amin-value 

can cover all distress types as it will result in the highest thickness value. The choice of selection 

will be primarily based on the importance level of a given project. Finally, a predictive model 

based on the nominal properties of the mixtures was developed to facilitate determination of a 

relatively accurate aave-value for the study mixtures.  
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As a future work in this study, using the proposed methodology in this research the layer 

coefficients of the binder and base mixtures including the cold recycled mixtures should be 

developed and evaluated on basis of the field distress data. 
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11. Summary, Conclusion, Recommendations and Future 

Extensions 
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11.1 Summary 
With advancements in laboratory testing equipment and scientific theories to capture constitutive 

behavior of asphalt mixtures, the performance based material characterization and pavement 

design is becoming reality. These approaches as preferred as they can result in major savings 

through prolonging of pavement service lives. Therefore, it is necessary to develop appropriate 

testing and performance index parameters to determine the mixtures’ distress susceptibility. The 

performance index parameters should not only be able to differentiate the mixtures in lab, but they 

also need to provide acceptable correlations with the field distress data.  

Perhaps, one major issue in pavement industry is the gap between the mixture and pavement 

design. Since different asphalt mixtures have a wide range of variety with respect to their nominal 

properties and production methods, they can perform very differently under comparable loading 

and climatic conditions. For this reason, in many instances the pavements’ failures are primarily 

associated with the improper design due to lack of knowledge about the structural contribution and 

performance of different mixtures within the pavement system, this is especially true when the 

design is based on empirical approaches. In this doctoral thesis the aim has been to address part of 

the stated knowledge gaps through conducting research on different aspects associated with 

pavement structure contributions and performance of asphalt mixtures.  

In order to fulfill this aim, 18 different types of asphalt mixtures including asphalt rubber gap 

graded, cold recycled as well as other types of conventional and polymer modified mixtures that 

are commonly used in New Hampshire were selected for investigation. The laboratory testing plan 

included resilient modulus (Mr), complex modulus (E*), direct tension cyclic fatigue (S-VECD), 

semi-circular bend (SCB) and disk-shaped compact tension (DCT) tests. The results of the tests 

and analysis were utilized to evaluate the effect of mixture design properties on performance 

prediction indices through statistical analysis, correlations between different performance index 

parameters from each test were also conducted. Furthermore, the effect of production methods 

(cold versus hot) was evaluated through predicted performances from mechanistic approaches. 

The correlations of the existing performance index parameters were compared to available field 

distress data for the study mixtures to evaluate the strength of correlations between the field and 

laboratory predicted performances. On the basis of the observations from these correlations, it was 

determined that there is need to develop new index parameters that can better reflect the field 

performance for New Hampshire roadways. Therefore, three index parameters for rutting (based 

on complex modulus, transverse cracking (based on SCB) and fatigue cracking (based on S-

VECD) were developed. The rutting and fatigue index parameters were shown to be highly 

correlated with the field distress data while the transverse cracking index was shown to be able to 

reduce the variation among results from different replicates. Finally, the new index parameters and 

field performance data were utilized in development of performance incorporated layer 

coefficients that are proposed to be used in the AASHTO 1993 pavement design approach.  

11.2 Conclusions 

Over the course of this doctorate research a number of significant findings were inferred. Specific 

conclusions and findings from each component of research are discussed in individual chapters. A 

high-level summary of key conclusions from the research efforts are as following: 
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 A generalized regression based approach is well suited to predict mechanistic properties of 

asphalt mixtures using nominal mix attributes. A generalized regression based model has 

been developed for complex modulus in this research and it has shown to have better 

prediction capability than existing models, including those that require some lab measured 

inputs.  

 The performance of cold recycled (CR) mixtures as per NHDOT specifications appears to 

be more influenced by the RAP source, RAP binder properties and, emulsion type and 

content as compared to the gradation of RAP. The S-VECD fatigue results using the DR 

failure criterion indicate that the CR mixtures would be expected to have better fatigue 

resistance than the HMA mixtures. However, the lower stiffness of CR mixtures, as 

measured by the resilient modulus, indicates that they may have more susceptibility to 

rutting as compared to the HMA mixtures. 

 Since rutting is a viscoplastic distress, the phase angle plays an important role in 

mechanism of rutting formation. Therefore, in this research a complex modulus based 

rutting index parameter is developed which takes into account the effect of phase angle and 

stiffness at the same time. This index is indicated to be highly correlated with the field data 

as well as Hamburg wheel tracking test (HWTT) results for different mixtures in New 

Hampshire. This index parameter can also help reducing the specimen fabrication and 

testing time required to conduct a separate destructive testing such as HWTT, flow number 

etc. 

 The development of a rate dependent cracking index (RDCI) in this research is supported 

by fundamental fracture mechanics, it is free from any type of empirical or undefinable 

variable within the parameter. The use of continuous cumulative work at various times can 

help with describing and evaluating the crack formation and propagation mechanisms at 

any given time during the test. Due to inherent presence of time in all work and power 

terms of RDCI; it is expected to better capture the rate dependency of fracture in asphalt 

mixture. 

 The current fatigue failure criteria within S-VECD analysis framework did not indicate to 

be able to reliably rank the field performance of the mixtures as a stand-alone parameter. 

Therefore, a new failure criterion called as 𝐶𝑁𝑓

𝑠 was developed and investigated. This 

criterion incorporates three components of the S-VECD theory (cumulative pseudo-strain, 

number of cycles to failure at strain level and amount of continuum damage in material at 

failure) to capture the mixture’s disintegration with respect to damage growth rate. The 

parameter indicated that it is not only able to rank the mixtures but it also well correlated 

with the magnitude of fatigue cracking in the field. 

 The application of performance index parameters has mostly been limited to differentiating 

the mixtures’ lab performance as well as performance based mixture design approaches. 

However, the use of these indices to influence the pavement design has been limited. The 

new layer coefficients developed in this research incorporate the lab measured performance 

indices and reflect the expected performance of asphalt mixtures in the field. Thus, 

pavement structures designed with the proposed layer coefficients are expected to have 
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higher reliability in terms of performance and service life. This will result in reduced initial 

construction and routine maintenance costs since the pavements structure is designed based 

on reliable performance parameters that the pavement deterioration time can be estimated 

on basis of them.  

11.3 Recommendations 
Asphalt mixtures are complicated viscoelastic materials that exhibit significantly different 

performance under varying climatic and loading circumstances. Due to these attributes, the 

mixtures may undergo different types of distresses such as rutting, fatigue and transverse cracking 

each with a specific mechanism of initiation and evolution. Therefore, the mixture’s performance 

need to be evaluated through appropriate testing method and performance index parameters. The 

performance index parameters when correlated to the mixture design properties and volumetrics, 

can provide useful information for the mix design engineers which can ultimately lead to mixtures 

that are able to withstand competing distresses such as rutting and cracking at the same time.  In 

addition, implementing performance based testing and index parameters in mixture design can 

result in prolonged pavement service life, reduced costs of maintenance and rehabilitation, safer 

highways to accommodate more traffic and finally environmental friendly pavements with smaller 

greenhouse gas emission footprint.  

In order to reduce the construction costs and air pollutions, different types of materials, mixture 

production and construction techniques such as rubberized binders, cold recycling, warm mix 

technology etc. have been used in the last few decades which need to be evaluated through 

performance based testing methods before extensive productions of those mixtures.  However, in 

many instances, due to the limitations in time, cost, laboratory equipment as well as experienced 

technicians, it may not be possible to determine the mixtures’ performance properties through lab 

testing. For this reason, predictive models that are developed based on large datasets can be used 

as a tool to help in preliminary mixture screening procedure. These models, if developed to predict 

the mixtures viscoelastic properties such as, dynamic modulus and phase angle (complex 

modulus), can also be utilized in mechanistic-empirical pavement design approach to predict the 

magnitude and evolution of distress over time. In addition, complex modulus master-curves 

provide useful information about different mixture properties and can be used as an initial tool to 

predict the mixtures distress susceptibility potential. With respect to thermal cracking the high 

frequency portion, with respect to fatigue cracking the middle portion of the master-curves and for 

rutting the lower portion of the master-curves can be used to screen the mixtures. 

Ultimately, any performance index parameter or failure criterion should have an acceptable 

correlation with the field distress data. A well correlated performance index parameter not only 

can be used in mixture screening phase, but it can also be utilized in pavement structural design 

system to help calibrating the design inputs in an empirical design approach such as the layer 

coefficients in AASHTO 1993 approach or in a mechanistic-empirical design approach by 

calibrating the coefficients of the transfer functions. Therefore, more reliable pavement structures 

can be designed which result in longevity of transportation infrastructures. Thus, it is necessary to 

evaluate the structural contribution of asphalt mixtures through reliable performance index 

parameters.  
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11.4 Future Extensions 

The research study conducted in this doctoral thesis can be further extended in different areas of 

asphalt mixtures science. Following are some examples of the future works that are categorized in 

different areas of application in this thesis and need to be conducted as a future expansion to 

different portions of this research; 

 Additional material characterization 

The mechanistic performance of cold recycled mixtures can be further examined using different 

types of stabilizers such as lime and cement. In addition, the effect of curing time needs to be 

evaluated in the cold recycled mixtures’ performance for different types of emulsions. 

Development of a mechanistic testing incorporated mixture design approach for the cold recycled 

mixtures can improve the properties of mixtures and facilitate development of predictions models 

for such mixtures. 

The complex modulus predictive models can be further improved by addition of more mixtures to 

the dataset with even more varying types of binders and aggregate geologies. With expanding 

datasets, the predictive models can be categorized with respect to different types of binders or 

different types of courses to increase the reliability of the models.  

 Index development 

In this research the correlations between the developed rutting index parameter and Hamburg 

wheel tracking (HWTT) test was evaluated for mixtures used in New England area.  Since the 

temperature conditions of HWTT is varying among different climatic conditions, it would be 

necessary to adjust the selection of HWTT based on local conditions. 

The rate dependent cracking index parameter is applicable for any type of monotonic fracture 

testing including low temperature cracking tests such as disk-shaped compact tension test, 

however, the results need to be further investigated through correlations to the field distress data. 

The fatigue failure criterion although indicated reliable results as a standalone parameter with 

respect to the available field distress data, it needs to be further evaluated for other types of 

mixtures and varying cross sections. An appropriate damage factor for this criterion needs to be 

developed so that this parameter can be utilized as an alternative to other available fatigue failure 

criteria in software such as FlexPAVETM. As another improvement to this failure criteria, a level 

of strain obtained from pavement structural analysis can be added as coefficient to the parameter 

so that it can better discriminate the field performance of different cross sections. 

 Layer coefficient development 

The methodology of development of layer coefficients can be further improved by figuring out the 

appropriate weighing system to different types of distresses as some distresses are more correlated 

to the rutting and this may induce bias in the average and minimum layer coefficients. 

Although resilient modulus based layer coefficients for binder and base course mixtures were 

calculated and determined in this study, the framework developed in this research can be applied 

to develop performance incorporated layer coefficients for these types of mixtures. In order to 

achieve this goal, the developed mixture specific layer coefficients for the wearing course mixtures 
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can be used to back-calculate the layer coefficients of the base and binder mixtures. Then 

individual performance based a-values for these mixtures can be calculated and compared to the 

back-calculated a-values to determine the prevailing parameter on different mixtures. As a result, 

the performance incorporated a-values can be determined by using either only one or more 

parameters that contribute to the distresses in these type of mixtures. 
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STATISTICAL EVALUATION OF THE EFFECTS OF MIX 

DESIGN PROPERTIES ON PERFORMANCE INDICES OF 

ASPHALT MIXTURES 
 
1Rasool Nemati, 2Eshan V. Dave, 3Jo E. Sias 

 

ABSTRACT 

A variety of testing and performance index parameters are available to assess the asphalt mixture 

performance with respect to different structural distresses. However, due to continuous 

improvements in asphalt material production and construction techniques, it is necessary to 

regularly evaluate the correlation of the performance index parameters with mixture design 

properties. It is also important to determine the correlation between index parameters from 

different tests to help save time and financial resources by making engineering based adjustments 

to the mixture design before conducting multiple tests. This study explores the statistical 

correlation between mixture design properties and performance index parameters as well as the 

correlations among the performance index parameters from different tests. A total of 14 commonly 

used asphalt mixtures in New Hampshire were evaluated using the complex modulus (E*), resilient 

modulus (Mr), direct tension cyclic fatigue (S-VECD), Illinois semi-circular bend (SCB-IFIT), and 

disk-shaped compact tension (DCT) tests to assess the correlations between various performance 

indices and mix design properties. The results indicate that the aggregate fractions that pass 4.75 

mm and 75 µm sieve sizes, the binder useful temperature interval, and recycled asphalt content 
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significantly affect most of the index parameters. Medium to high correlations were observed 

between S-VECD, DCT and SCB with respect to different index parameters. 

Keywords: Statistical Correlation, Performance Index, S-VECD, Flexibility Index, Fracture Energy 

INTRODUCTION 

The performance of asphalt mixtures is a direct function of mixture design properties such as 

aggregate size and gradation, binder type and content, air void percentage and any additives in the 

mixture. Due to the viscoelastic nature of asphalt mixtures, the loading and climatic conditions 

will also significantly affect mixture performance. Therefore, it is important to examine the 

mixture performance through laboratory testing and apply the necessary adjustments to the mixture 

design to ensure the best possible field performance. For that reason, a thorough understanding of 

the effect of each of the mixture’s components with respect to a specific type of distress is of high 

interest to pavement engineers. In general, asphalt mixtures may encounter three types of structural 

distresses: rutting, fatigue, and thermal cracking, each with specific failure mechanisms. Many 

studies have been conducted to determine the relationship between mixture design parameters and 

different types of distresses. The paragraphs below provide recent examples that evaluate similar 

parameters to those included in this study.  

Work performed by Zhao [1] investigated the correlation of the aggregate gradation, voids of 

mineral aggregate (VMA), voids filled with asphalt (VFA) and asphalt film thickness (FT) with 

rutting. The results indicated that the effects of these parameters are considerably lower for a 

mixture with 4% air void content compared to one with 7% air voids.  

Diab et al. [2] indicated the importance of the effect of fine aggregate source and dust to effective 

binder (d/be) ratio by means of conducting the indirect tensile strength and moisture susceptibility 

tests, where a combination of hydrated lime and 0.95 (d/be) resulted in improved mechanistic 

properties of the mixtures. In another study to demonstrate the effect of ageing level, Rahbar 
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showed that there may not be a strong correlation between binder and mixtures cracking properties 

[3]. Through statistical analysis during development of a balanced mix design for overlay mixtures 

in Texas, it was indicated that the binder performance grade (PG), effective binder volume (Vbe), 

FT and aggregate surface area (SA) have a significant effect on the mixture cracking performance, 

while air void content was shown to have minimal effect in the results of the Texas Overlay (OT) 

test [4]. Using a large dataset of more than 170 mixtures from New England and Minnesota, 

Oshone et al. showed high correlation of binder related properties such as binder content, film 

thickness and performance grade useful temperature interval (UTI) with fracture energy (Gf ) 

obtained from the disk shaped compact tension (DCT) test [5]. A research study conducted by the 

National Center for Asphalt Technology (NCAT) on the refinement and validation of 4.75 mm 

Superpave mixtures examined the statistical correlation between the mixture design volumetric 

properties such as Vbe, VMA, VFA, d/be and FT to the rut depth from the Asphalt Pavement 

Analyzer (APA) and Gf from the indirect tensile creep (IDT) test [6]. The Pearson correlation 

coefficients indicated that d/be is the most significant factor followed by FT. The results also 

revealed the importance of Vbe and its two-way interaction with the amount of natural sand in the 

mixture with regards to the rut depth. In a research study to develop predictive models for dynamic 

modulus (|E*|) and phase angle of asphalt mixtures, Nemati and Dave implemented only the 

nominal mixture design properties such as recycled binder ratio (RBR), nominal maximum 

aggregate size (NMAS), air void percentage (AV%) and asphalt content (AC%) in construction of 

the models and indicated the significance of two-way interactions of these parameters in the linear 

viscoelastic behavior of asphalt mixtures [7]. There are many more examples of the research 

studies conducted on correlations between mixtures properties and performance conducted by 

other researchers [8-12]. However, due to continuous improvements in asphalt material production 

and construction techniques, it is necessary to regularly evaluate the correlation of the distress 
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index parameters with mixture nominal properties to identify the gaps between production and 

performance evaluation tools. 

A variety of laboratory performance based testing and analysis methods are available to 

characterize mixture performance with respect to individual types of distresses. In order to simplify 

the application of these tests to rank and correlate the performance of the mixtures in the lab to 

that of the field, different failure criteria and performance indicator parameters have been proposed 

and evaluated. Many of the existing criteria are based on different mechanics of failure (i.e. fracture 

mechanics, continuum damage mechanics) and are designed to evaluate only one particular type 

of performance. Optimally, the mixture should be designed in a manner to tolerate multiple 

competing distresses such as rutting and cracking at the same time. In many instances laboratories 

are not equipped with all the required testing equipment and if so, the exhausting amount of time 

required for sample fabrication and testing in addition to the required number of trained technicians 

in the lab may not be feasible to conduct all tests. As a result, there is a need to investigate the 

correlation between laboratory test results and index parameters of different tests to determine if 

any of them can be used interchangeably or at least provide some preliminary estimate of the 

mixture’s performance in laboratory tests that have not been performed. For instance, Na 

Chiangmai found a high correlation between the plateau value (PV) from the bending beam fatigue 

test and pre-peak fracture energy from the DCT test [13]. Also, Tang investigated the correlation 

between fracture and fatigue resistance of high RAP continued HMA mixtures [14].  However, 

there is generally very little available in the literature correlating the indices from different tests.   

Among the asphalt mixture characterization tests, complex modulus has been widely used as the 

main input in development of rutting and cracking transfer functions in many mechanistic-

empirical pavement modeling software (e.g., AASHTOWare Pavement ME and FlexPAVE™). 

The dynamic modulus (|E*|) master-curve indicates the stiffness of the mix over a broad range of 
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loading frequencies at a reference temperature, and can be potentially used to provide preliminary 

performance predictions with respect to different types of distress. For example, the lower 

frequency tail of the master-curve which is associated with the stiffness in higher temperatures has 

been used to discriminate the rutting performance [15], [16]. Nonetheless, the mid and high range 

frequencies which correspond to medium and low temperatures have not been explicitly evaluated 

in terms on correlation with other types of distresses such as fatigue and thermal cracking. 

This study pursues the following three objectives: 

 Identify key mixture design factors with respect to different asphalt mixture performance 

indices with aim of improving pavement performance to specific distresses.  

 Determine the correlations between indices from different performance prediction tests in 

order to estimate other types of distress. 

 Introduce and explore three complex modulus based indices and their correlation to the 

specific distress index parameters from other tests in order to assess the applicability of 

master-curves for evaluating mixture performance. 

STUDY MATERIALS AND EXPERIMENTAL PLAN 

This study investigates 14 hot mixed asphalt (HMA) mixtures, including two asphalt rubber gap 

graded (ARGG) and different types of dense graded mixtures with unmodified and polymer 

modified asphalt binders used in construction of wearing, intermediate, and base courses. The 

study mixtures are selected to represent the range of aggregate size and gradation, binder type, 

RBR, and gyration level commonly used on New Hampshire roadways. Information on the study 

mixtures is summarized in Table 1. RBR is defined as the percentage of recycled binder with 

respect to total binder content. All mixtures studied herein are designed at the 4% air void level. 

The useful temperature interval (UTI) is defined as the difference between the PG high temperature 

and the PG low temperature. To fabricate the specimens, the plant-produced mixtures were 
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reheated at 135°C and specimens were compacted to 6±0.5% air void level using a Superpave 

gyratory compactor to represent typical in-place density. 

Table 1. Study Mixtures Design Characteristics  

 

PERFORMANCE TEST RESULTS AND STATISTICAL ANALYSIS 

This section presents the results of the mechanistic and performance prediction tests including 

complex modulus (E*), resilient modulus (Mr), direct tension cyclic fatigue (S-VECD), Illinois 

semi-circular bend (SCB-IFIT), and disk-shaped compact tension (DCT). Each subsection will 

briefly compare the mixtures for an individual test using the specific performance index parameter 

related to that test. Along with the performance tests, a forward direction step-wise linear 

regression statistical analysis is conducted between the mixture design properties and performance 

index parameters to determine the most significant design variables affecting the index parameter.  

All the statistical analysis are conducted by means of JMP PRO statistical software. The evaluated 

Mixture Course
NMAS 

(mm)

Binder     

Performance 

Grade

Useful 

Temperature 

Interval (UTI) 

(°C)

AC% VMA Vbe%
RBR

%

%Passing 

4.75 mm

%Passing 

0.075 mm
Gyration

ARGG-1 58-28 86 7.8 19.1 15.1 0.0 40.0 3.5 75

ARGG-2 58-28 86 7.6 18.4 14.4 6.6 37.0 3.5 75

W-6428H-12.5 64-28 92 5.4 16.1 12.1 18.5 57.0 3.8 75

W-5828L 58-28 86 5.8 15 11.0 16.2 57.0 3.6 50

W-5834L 58-34 92 5.4 15.3 11.3 18.5 60.0 3.7 50

W-7628H-12.5 76-28 104 5.4 16.1 12.1 18.5 57.0 4.0 75

W-7034PH 70-34 104 5.8 16 12.0 0.0 59.0 3.7 75

W-7628H-9.5 76-28 104 6.1 16.3 12.3 14.8 68.0 4.9 75

W-5828H 58-28 86 5.9 16.6 12.6 16.9 70.0 4.5 75

W-6428H-9.5 64-28 92 6.4 17.1 13.1 0.0 69.0 5.2 75

B-6428H 64-28 92 4.8 14.3 10.3 20.8 46.0 3.5 75

B-5834L 58-34 92 4.6 14.1 10.1 21.7 43.0 3.2 50

B-5828H 58-28 86 4.8 14.2 10.2 20.8 47.0 3.2 75

BB-6428L Base 25.0 64-28 92 4.8 14.2 10.2 20.8 36.0 3.5 50

Wearing

12.5

9.5

Intermediate 19.0
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design properties used in this paper are those presented in Table 1, and separately evaluating the 

high and low performance PG grades (PGHT, PGLT).  

The statistical analysis includes the following notable parameters: 

 The coefficient of estimate of linear regression where a positive estimate means that the 

variable and response are directly proportional and a negative estimate value indicates they 

are inversely proportional.  

 The t-ratio which is the estimate divided by the standard error. Since the degree of freedom 

(DF) for the t-test analysis in this study is 10 (DF=number of variables-1), the t-ratios over 

1.812 (in absolute value) at 90% confidence level, suggesting that the coefficient is 

significantly different from the mean.  

 The probability value (p-value) of a two tailed t-test analysis which reveals the influence 

of each mix design factor on the performance test where a lower p-value means a higher 

effectiveness of the factor. A significance level (α) of 0.1 equal to 90 percent confidence 

level was considered as the set p-value to discriminate the influential parameters.  

Complex modulus 

The complex modulus test was performed in accordance with AASHTO T342 test standard [17] 

using an Asphalt Mixture Performance Tester (AMPT) and three replicate specimens. The test is 

conducted at three different temperatures (4.4°C, 21.1°C and 37.8°C) and six frequencies (25Hz, 

10Hz, 5Hz, 1Hz, 0.5Hz and 0.1Hz). The master-curves were constructed at a reference temperature 

of 21.1°C using the time-temperature superposition principle. The dynamic modulus master-

curves for all the mixtures are depicted in Figure 1. The results indicate that ARGG-2 is stiffer 

than ARGG-1 over the range of frequencies because of the RBR content in the ARGG-2. In terms 

of other wearing courses, W-7628H-12.5 is shown to be the stiffest mixture while W-7034PH 

which contains a polymer modified binder with 4% styrene butadiene styrene (SBS) and 4% 
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aromatic oil is the softest. With respect to the intermediate and base course mixtures, B-6428H is 

the stiffest and B-5828L is the softest. 

 

Figure 1. |E*| Master-curve (Reference Temperature = 21.1°C) 

Three different dynamic modulus based index parameters for rutting, fatigue, and thermal cracking 

are proposed to help evaluate the performance prior to conducting other distress specific 

performance tests during the iterative mix design procedure. The aim of these parameters is to not 

replace the use of laboratory performance tests, rather help lower the amount of testing that might 

be necessary. The │E*│based distress parameter measurements are shown in Figure 2. These 

index parameters are selected and described based on the following assumptions: 

 The rutting parameter as │E*│@ 1.59Hz & 40°C was selected to represent a worst case 

scenario for rutting at which the material has still a linear viscoelastic response.  The 1.59 

Hz is selected as an equivalent frequency to the Superpave binder rutting criteria measured 

in dynamic shear rheometer at 10 rad/s. A higher value of this parameter is more desirable 

as mixtures with higher stiffness are generally more rut resistant. 

 The fatigue parameter as │E*│@ 15Hz & 12°C was selected based on the recommended 

S-VECD fatigue test temperature selection by in the AASHTO TP 107 specification. This 
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temperature is determined as 3˚C lower than average of PGHT and PGLT. Considering 

New Hampshire climatic conditions the 12°C is most applicable to mixtures studied herein.  

The selected frequency of 15 Hz for fatigue and thermal cracking is representative of nearly 

90 km/h traffic speed.  A lower value for this parameter is preferred for better fatigue 

cracking performance as it would indicate a less stiff material that typically has greater 

ductility. 

 Finally the thermal cracking parameter is chosen as │E*│@ 15Hz & -18°C to comply with 

the binder bending beam rheometer (BBR) test temperature selection for majority of 

mixtures in this study. Similar to fatigue cracking parameter a lower value is preferred here 

as well.  

It should be mentioned that the selection of the temperatures for the dynamic modulus based 

index parameters has been based on the local climatic conditions in New Hampshire and is 

associated with the common binder grades that is used in this area. Therefore, these values can 

change appropriately with respect to the climatic conditions of other regions.  

 

Figure 2. Dynamic Modulus Based Distress Criteria  
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The results from the statistical analysis regarding the significant mix design properties affecting 

the dynamic modulus based distress index parameters is depicted in Table 2. The results can be 

summarized as follows: 

  Binder PGHT and UTI have significant effect on the midrange stiffness of the mixtures 

and the selected fatigue parameter. In comparing the mixtures containing conventional 

binder types with similar design properties such as B-6428H and B-5828H, the one with 

warmer PGHT is stiffer. However, comparing mixtures with same PGHT such as W-5828 

and W-5834, the one with higher UTI is less stiff. Although polymer modified binders 

usually have warmer PGHT, because of the influence of polymer, they usually have much 

higher UTI and therefore better stress relaxation and creep recovery properties compared 

to conventional binder and consequently are less fatigue susceptible. 

 As expected, the higher level of gyration increases the stiffness, which is desirable for 

rutting, but it may also increase the fatigue susceptibility as higher gyrations usually result 

in reduced VMA and relatively lower binder contents.  

 The cumulative percent passing the 4.75 mm sieve is shown to be an important factor for 

all three parameters. The negative estimate coefficient of this variable means that 

increasing the amount of fine aggregate in the mixture will reduce the stiffness which can 

help in cracking resistance while increasing the rutting susceptibility.  

 The significance of RBR in increasing the mixtures stiffness can be seen for both rutting 

and fatigue cracking.  

 With respect to thermal cracking, the effect of volumetrics such as VMA and AC% are 

significant to the performance. A high amount of VMA if not filled with sufficient amount 

of AC% would result in thin asphalt films around the aggregate resulting in a mixture with 

lower stress relaxation capabilities which will increase the thermal cracking susceptibility.  
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Table 2. Significant mix design properties for dynamic modulus based distress index 

parameters 
 

Distress 
Index 

Parameter 

Mix 

Property 
Estimate Std Error t-Ratio Prob>|t| 

Rutting 

│E*│@ 

1.59Hz          

& 40°C 

%Passing 

4.75mm 
-10.52 2.30 -4.57 0.0018 

Gyration 6.78 2.61 2.59 0.0321 

RBR 11.94 4.93 2.42 0.0418 

Fatigue 

│E*│@ 

15Hz            

& 12°C 

RBR 183.98 28.22 6.52 0.0002 

%Passing 

4.75mm 
-74.64 18.94 -3.94 0.0043 

Gyration 65.75 24.41 2.69 0.0273 

PGHT 70.21 35.08 2.00 0.0803 

UTI -183.30 93.63 -1.96 0.0859 

Thermal 

Cracking 

│E*│@ 

15Hz            

& -18°C 

%Passing 

4.75mm  
-264.84 113.91 -2.32 0.053 

AC% -4901.74 2110.69 -2.32 0.0532 

VMA 1784.16 916.02 1.95 0.0925 

 

Resilient modulus 

The resilient modulus test was conducted at 25°C in accordance with ASTM D7369-11 standard 

test method [18] with three replicate specimens. The results from this test are shown in Figure 3. 

The error bars on the graph show one standard deviation from the mean. It has been indicated that 

the asphalt mixtures’ resilient moduli are correlated to the rutting susceptibility [19], therefore the 

Mr measurements are used as the primary rutting performance indicator in this study. The results 

indicate that ARGG-2 has a higher Mr value compared to ARGG-1 which is mainly related to the 

RBR percentage difference. The other wearing courses show expected results such that W-7628H-

12.5 with a stiffer binder and high gyration level resulted in a higher modulus whereas mixtures 

such as W-5834L because of lower number of gyration and W-7034PH as a virgin mixture with 
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lower PGLT are the softest among all mixtures. According to mix properties W6428H-12.5 is 

expected to have a higher modulus than W5828L, while the Mr values for both mixtures are very 

similar. One possible explanation is that the single testing temperature and single loading 

frequency is not able to capture the viscoelastic properties of the mixtures. Therefore, the future 

validation of the test results with respect to more specific rutting tests such as Hamburg wheel 

track test, asphalt pavement analyzer, flow number etc. will be necessary [20,21]. 

 

Figure 3. Mr Test Results  

The results from the statistical analysis on Mr test is depicted in Table 3. Similar to the rutting 

criteria from the │E*│master-curves the % passing 4.75 mm sieve size and RBR are among the 

significantly effective factors on the resilient modulus. However, while performing the statistical 

analysis it was observed that almost all volumetric parameters as well as gyration levels have less 

than 10% significance level when rutting is a concern. However, the NMAS with a positive 

estimate coefficient was seen to be close to the 0.10 significance level. Considering the results 

from statistical analysis on Mr, with an intention to mitigate the rutting issues, designers can simply 

change the binder type as an efficient adjustment to the mix design. 
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          Table 3. Significant Mix Design Properties Affecting Resilient Modulus (Mr) 

Index 

Parameter 
Mix Property Estimate 

Std 

Error 
t-Ratio Prob>|t| 

Resilient 

Modulus, Mr 

PGHT 181.20 42.42 4.27 0.0021 

UTI -156.22 40.84 -3.83 0.0041 

%Passing 4.75mm -29.15 9.57 -3.05 0.0139 

RBR 32.15 12.38 2.6 0.0289 

 

Direct Tension Cyclic Fatigue (S-VECD) 

The uniaxial fatigue test was performed in accordance with AASHTO TP 107 standard [22] on 

four replicates each at a different strain level. The test is conducted with respect to the binder 

performance grade at (
𝑃𝐺𝐻𝑇−𝑃𝐺𝐿𝑇

2
− 3°𝐶). Currently, there are two widely accepted fatigue criteria 

based on the S-VECD approach: Nf @ GR=100 and DR [23]. GR is the rate of averaged dissipated 

pseudo strain energy which indicates the decrease in the mixture’s energy storage capacity due to 

each loading cycle. The number of cycles to failure at GR equal to 100 (Nf @ GR=100) is usually 

used to rank mixtures. DR is the average reduction in pseudo stiffness per loading cycle and 

indicates the decrease in material integrity in terms of stiffness as the load is applied. DR values 

usually range from 0.3 to 0.7 with higher values indicating better fatigue resistance [24].  The 

results from Nf @ GR=100 and DR are shown in Figure 4 and Figure 5, respectively. The effect of 

addition of RBR is evident when comparing the fatigue performance of ARGG-1 to ARGG-2. The 

W-7034PH, which is a virgin polymer modified mixture, shows very good fatigue performance. 

As expected, the intermediate and base course mixtures have lower fatigue resistance because of 

larger aggregate size, lower binder content, and higher RBR percentages. The two indices have 

minor differences in ranking, especially for mixtures such as W-6428H-12.5, W7628H-12.5, 

W7628H-9.5, and B6428H. Also, the discrimination of the magnitude of difference between 
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performance is shown to be quite different. For example, with respect to Nf @ GR =100, W-

7034PH is indicated to have 4 times higher Nf value compared to W-7628H-9.5, however, their 

DR values is relatively close. The discussion on the difference of these two indices is out of the 

scope of this paper, however, a hierarchical clustering analysis indicated that, with the exception 

of ARGG-2, both indices are able to separate the intermediate and based courses from wearing 

courses. Similar observations with respect to capability of clustering the type of mixtures with 

respect to production method (hot mixed versus cold recycled) has been seen by applying the DR 

criterion in other studies conducted by authors [25]. 

 

Figure 4 . Energy Based Viscoelastic Continuum Damage Fatigue Index Parameter (NF @ 

GR = 100) 

 

Figure 5. Pseudo-Stiffness Based Viscoelastic Continuum Damage Fatigue Index Parameter 
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The effect of mix design parameters on S-VECD based index parameters in shown in Table 4. The 

analysis confirms the high importance of fine aggregate and dust in the mixtures as both indices 

are highly dependent on the cumulative percent passing amounts on 4.75 mm and 75 µm sieves, 

where an increase in the dust amount causes a lower fatigue life. On the other hand, the increase 

in cumulative percent passing 4.75 mm results in a lowering of non-uniform air void dispersion in 

the aggregate matrix and results in a better fatigue resistant mixture. The effect of UTI is apparent 

in both indices, with a larger value being better for fatigue resistance.  Both indices show sensitivity 

to the changes in the amount of RBR with GR being more influenced by the RBR content. The 

effect of gyration level could be the main noteworthy difference between the two parameters where 

a higher level of gyration is shown to have a negative effect on the Nf @ GR=100 parameter. 

Similar observations were seen from the effect of gyration on the dynamic modulus based fatigue 

parameter (Table 2). as higher gyrations can increase the modulus and lower the fatigue life. 

From an engineering perspective, higher VMA is required for a durable mixture to retain a 

satisfactory amount of binder, however the statistical analysis indicated a negative effective of 

VMA. It should be noted that throughout the paper, wherever VMA is indicated as a negative 

effective factor, it is accompanied by the positive effect of either Vbe or AC% as they are tied to 

each other. This means that a higher VMA in the mixture design is not a guarantee for a crack 

resistant mixture and the effective binder content to fill the void spaces in aggregate skeleton is 

critical. 

  



www.manaraa.com

 

A-16 
 

Table 4. Significant Mix Design Properties Affecting Simplified Viscoelastic Continuum 

Damage   Based Fatigue Performance Indices (Nf @ GR = 100 and DR) 

Index 

Parameter 
Mix Property Estimate Std Error t-Ratio Prob>|t| 

Nf @ 

GR=100 

RBR 
-730.84 162.26 -4.5 0.0041 

% Passing 4.75 mm 469.03 187.52 2.5 0.0465 

%Passing 0.075mm -9011.72 3748.20 -2.4 0.053 

UTI 372.52 170.75 2.18 0.0719 

VMA -190.285 90.28 -2.11 0.0796 

Gyration -5262.82 2511.85 -2.1 0.081 

Vbe 4089.5 2004.01 2.04 0.0874 

DR 

UTI 0.012 0.002 5.69 0.0007 

% Passing4.75 mm  0.021 0.005 4.29 0.0036 

%Passing 0.075mm  -0.156 0.051 -3.03 0.0191 

RBR -0.006 0.002 -2.62 0.0343 

Vbe 0.061 0.031 2.00 0.0850 

 

Illinois Semi-Circular Bend (SCB-IFIT) 

The Illinois semi-circular bend (SCB-IFIT) test was conducted to determine the fracture properties 

of asphalt mixtures at intermediate temperature in accordance to AASHTO TP 124 standard [26] 

at 25°C using four replicates. The main outcomes of this are the fracture energy (Gf) and flexibility 

index (FI). The results from the Gf and FI are shown in Figure 6 and Figure 7, respectively. The 

results indicate that fracture energy is not able to fully differentiate the cracking resistance of 

different mixtures. For example, according to the results from S-VECD, ARGG-2 was shown to 

be a less crack resistant mixture compared to ARGG-1 whereas both mixtures have similar fracture 

energies. Apart from this discrepancy, the results from flexibility index agrees well with the other 

test results and crack resistance expectations. For instance, the W-7034PH was previously 
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indicated to be a superior fatigue cracking resistance through S-VECD analysis which is also 

differentiated in the same manner by FI. 

 

Figure 6. SCB-IFIT Fracture Energy (Gf) plots 

 

 
Figure 7. Flexibility Index plots 

 

The effect of mix design properties on the SCB fracture energy and FI are shown in Table 5. With 

respect to Gf, the higher PGHT and RBR result in a stiffer mixture and higher Gf values. However, 

it should be considered that higher fracture energy is not always about the higher stiffness and 

depending on the binder type and content a ductile mixture could also have a high fracture energy. 

This can be seen through a more in-depth investigation on a mixture such as W-7628H-9.5 which 
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maintains high Gf and FI values at the same time, while it retains one of the highest binder contents 

among the study mixtures.  

One of the main intents of developing the FI has been to capture the effect of RBR on mixtures 

cracking [27] which is clearly seen in table 5. In general, the significant mixture design parameters 

on FI are similar to those for S-VECD performance indices, indicating that there could potentially 

be a high correlation between the two indices. Therefore, if a mixture is optimized for one of these 

tests then it is likely to meet the requirements for other one as well.  

Table 5. Significant Mix Design Properties Affecting SCB Gf and FI 

Index 

Parameter 
Mix Property Estimate Std Error t-Ratio Prob>|t| 

Gf  

PGHT 79.64 9.81 8.12 0.0001 

RBR 41.09 12.26 3.35 0.0074 

AC% 321.92 105.53 3.05 0.0122 

FI 

RBR -0.79 0.15 -5.11 0.0006 

VMA -5.69 1.67 -3.39 0.0080 

UTI 0.27 0.13 1.94 0.0843 

Vbe 2.90 1.58 1.83 0.1008 
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Disk-Shaped Compact Tension (DCT) Test  

The disk-shaped compact tension (DCT) test was performed in accordance to the ASTM D7313 

standard testing method [28] on three replicates. The test is developed to determine the low 

temperature fracture properties of the asphalt mixtures. In general, the testing temperature is 

determined by 10°C+PGLT. However, in this study the LTTPBind software was used to determine 

the testing temperature as 10°C warmer than the 98% reliability pavement low temperature without 

rounding to nearest 6°C increment. In other words, continuous PGLT value on basis of the 

pavement location was used in the test temperature calculation. The two index parameters that are 

used to analyze the DCT test results are the Gf and the fracture strain tolerance (FST) [29]. The 

FST is determined by dividing Gf by the fracture strength (Sf). The results from Gf (including the 

test temperatures in degrees Celsius) and FST are shown in Figure 8 and Figure 9, respectively. It 

should be noted that the results of this test are not available for B-5828H at this time and the 

analysis is conducted on 13 mixtures. The ARGG mixtures have better performance compared to 

other wearing courses such as W-6428H-12.5, W-5834L and W-7628H-9.5 that are tested in 

similar temperature range, that is, these mixtures may have better thermal cracking performance 

in similar climatic conditions. Identical to the S-VECD and SCB-IFIT tests results, W-7034PH 

mixture indicates an outstanding performance with respect to low temperature cracking. The 

ranking from both Gf and FST are similar except for three mixtures (ARGG-2, W-5828L and, BB-

6428L). 
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Figure 8 . DCT Fracture Energy (Gf) plots (number in box indicate test temperature in ˚C) 

 

Figure 9 Fracture Strain Tolerance (FST) plotsTable 6. Significant Mix Design Properties 

Affecting Disk-Shaped Compact Tension Test Performance Indices (GF and FST) 

Index 

Parameter 
Mix Property Estimate Std Error t-Ratio Prob>|t| 

Gf  

RBR -21.70 5.28 -4.11 0.0063 

VMA -175.10 45.61 -3.84 0.0086 

UTI 47.19 12.50 3.77 0.0092 

%Passing 0.075mm -157.88 45.69 -3.45 0.0136 

AC% 227.63 68.16 3.34 0.0156 
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PGLT -36.21 13.13 -2.76 0.033 

Gyration 6.54 2.62 2.49 0.0473 

FST 

RBR -4.96558 0.78 -6.38 <0.0001 

%Passing 0.075mm  -44.16 11.55 -3.82 0.0034 

UTI 2.17 0.96 2.26 0.0474 

 

 Table 6 summarizes the significant mixture design properties on DCT index parameters. Similar 

to previous observations for FI and Nf @ GR =100, higher VMA has a negative effect on Gf while 

accompanied with the positive effect of AC%. The statistical analysis confirms that a lower PGLT 

will result in higher fracture energy values, indicating the importance of selecting an appropriate 

binder type for mixtures to withstand low temperature cracking.  

Similar to results from S-VECD fatigue indices, the % passing 75µm is considered as a significant 

mix design property for both Gf and FST. Higher amounts of dust can over-stiffen the mastic phase 

of mix and lower the asphalt film thickness which can lead to cracking. While the higher amount 

of RBR is shown to increase the cracking susceptibility, increase of UTI which, in general, can be 

translated into use of polymer-modified binders, mitigates the cracking. The positive effect of 

gyration level in increasing the fracture energy is an interesting point in the statistical analysis. For 

both the low temperature fracture energy and Nf @ GR =100, the four significant parameters are 

common and they have similar type of effects on the performance (increasing cracking resistance); 

this indicates the potential for a high correlation between these two parameters.  

Table 6. Significant Mix Design Properties Affecting Disk-Shaped Compact Tension Test 

Performance Indices (GF and FST) 

Index 

Parameter 
Mix Property Estimate Std Error t-Ratio Prob>|t| 

Gf  

RBR -21.70 5.28 -4.11 0.0063 

VMA -175.10 45.61 -3.84 0.0086 

UTI 47.19 12.50 3.77 0.0092 
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%Passing 0.075mm -157.88 45.69 -3.45 0.0136 

AC% 227.63 68.16 3.34 0.0156 

PGLT -36.21 13.13 -2.76 0.033 

Gyration 6.54 2.62 2.49 0.0473 

FST 

RBR -4.96558 0.78 -6.38 <0.0001 

%Passing 0.075mm  -44.16 11.55 -3.82 0.0034 

UTI 2.17 0.96 2.26 0.0474 

 

STATISTICAL CORRELATION OF THE PERFORMANCE INDEX PARAMETERS   

With respect to conventional volumetric mixture design, it is important for the designers to 

understand the significance of each mix design variable on the performance of the product.  

However, with changes in materials and loadings, asphalt mixture design is moving towards 

performance based design approaches such as the performance engineered mix design (PEMD). 

One of the main intent of the PEMD approach is to embed the mixture performance prediction 

tests within the structure of the volumetric based mixture design. The final product of the PEMD 

is a mixture that can withstand competing distresses such as rutting and cracking at the same time. 

However, such approaches need intensive testing to evaluate both rutting and cracking 

performance which may be time consuming and unaffordable in many settings. As a result, 

identifying the correlation among different distress index parameters could be a key factor in 

reducing the costs of performance based mixture design procedures.  

Before determination of any correlation among the indices, it is important to verify the data and 

identify any outliers within the dataset which could cause biased or unrealistic correlations. 

Therefore, the Mahalanobis distance (MD) [30] analysis was performed to determine the outlier 

mixtures in the study. This analysis essentially identifies an overall mean as the centroid for 

multivariate data. In a multivariate space, this point is where all the averages from all variables 
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intersect. Therefore, as a data point gets further away from the centroid, the MD for that data point 

becomes larger. In a dataset with different mixtures such as this study, the MD value is first 

calculated for the whole dataset and is called the MD threshold value. Then, for an each individual 

mixture, a separate MD value is calculated; if it exceeds the threshold MD value then that mixture 

is an outlier. As it can be seen from Figure 10, the W-7034PH and W-7628H-9.5 mixtures are very 

close to the calculated threshold value, however, they are below this point. Therefore, all the 

mixtures in the study can be used to establish the correlations. 

 

Figure 10. Mahalanobis distance of the study mixtures 

To determine the correlations among the parameters, the Pearson’s linear correlation coefficients 

(r) were calculated and depicted in Table 7. In general, the Pearson’s coefficients range from -1 to 

1 indicating a perfect negative and positive correlations, respectively. The strength of the 

correlations in this research are categorized into three categories defined as follows: 

 Weak correlation (W), │r│< 0.3  (indicated by italic font) 

 Medium correlation (M), 0.3 ≤│r│< 0.7  

 Strong correlation (S), 0.7 ≤│r│≤ 1 (indicated by bold font) 

 

Mr has a medium to high inverse correlation with Nf at GR=100 and FI, indicating increased 
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tied to each other and both of them are strongly correlated with the FI. The strong correlations 

between the Nf at GR=100 and FI with DCT (Gf) are among the most important observations in the 

table indicating that the proper adjustments to the mixture design properties can improve both 

fatigue and thermal cracking performance at the same time. However, it should be noted that the 

distress mechanism is substantially different between fatigue and thermal cracking and more in-

depth analysis is required to discriminate the capability of the mixtures to withstand either of these 

distresses. A strong correlation between the Mr and dynamic modulus based rutting parameter 

(│E*│at 1.59Hz &40°C) is observed. The dynamic modulus based parameters for thermal and 

fatigue cracking are on the average to higher end of the medium correlation range with respect to 

the performance indices such as FST, FI and Nf at GR=100. These correlations indicate that these 

dynamic modulus based parameters can potentially be used as preliminary mixture performance 

evaluation checkpoints throughout the mixture design procedure. 

Table 7. Pearson’s Correlations among Performance Index Parameters 

Distress 

Criterion 

Rutting Fatigue Thermal cracking 

Mr 

│E*│    

@ 1.59Hz       

& 40°C 

DR 
Nf @ 

GR=100 

SCB    

(Gf) 
FI 

│E*│   

@ 15Hz       

& 12°C 

DCT 

(Gf) 
FST 

│E*│   

@ 15Hz       

& -18°C 

Mr 1.00 - - - - - - - - - 

│E*│         

@ 1.59Hz         

& 40°C 

0.85 

(S) 
1.00 - - - - - - - - 

DR 
-0.54 

(M) 

-0.50 

(M) 
1.00 - - - - - - - 

Nf @ 

GR=100 

-0.65 

(M) 

-0.46 

(M) 

0.78 

(S) 
1.00 - - - - - - 

SCB          

(Gf) 

0.33 

(M) 

0.40 

(M) 

0.38 

(M) 

0.02 

(W) 
1.00 - - - - - 

FI 
-0.64 

(M) 

-0.37 

(M) 

0.80 

(S) 

0.87 

(S) 

0.17 

(W) 
1.00 - - - - 
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│E*│        

@ 15Hz            

& 12°C 

0.89 

(S) 

0.74 

 (S) 

-0.46 

(M) 

-0.61 

(M) 

0.48 

(M) 

-0.61 

(M) 
1.00 - - - 

DCT (Gf) 
-0.53 

(M) 

-0.19 

(W) 

0.60 

(M) 

0.80 

(S) 

0.07 

(W) 

0.91 

(S) 

-0.60 

(M) 
1.00 - - 

FST 
-0.47 

(M) 

-0.11 

(W) 

0.43 

(M) 

0.66 

(M) 
-0.06 

0.84 

(S) 

-0.62 

(M) 

0.94 

(S) 
1.00 - 

│E*│         

@ 15Hz           

& -18°C 

0.60 

(M) 

0.50 

(M) 

-0.56 

(M) 

-0.61 

(M) 

0.25 

(W) 

-0.60 

(M) 

0.80 

(S) 

-0.52 

(M) 

-0.57 

(M) 
1.00 

 

 

SUMMARY, CONCLUSIONS AND FUTURE WORK 

The time and costs associated with conducting multiple performance tests during mix design 

iterations may be one of the biggest challenge in routine use of performance engineered mix design 

approach. Therefore, it is necessary to determine the correlations between different performance 

index parameters and make engineering based adjustments to the mixture design prior to 

conducting multiple time consuming and expensive tests. In this study, a total of 14 commonly 

used asphalt mixtures in New Hampshire were evaluated using the complex modulus (E*), resilient 

modulus (Mr), direct tension cyclic fatigue (S-VECD), Illinois semi-circular bend (SCB-IFIT), and 

disk-shaped compact tension (DCT) tests to evaluate the correlations between various performance 

indices and mix design properties using advances statistical analysis techniques. In addition, three 

different dynamic modulus based performance index parameters were proposed and evaluated in 

terms of their correlations to other destructive performance tests. The important results and 

observations of the study are summarized as follows: 

 The cumulative percent passing 4.75 mm sieve size, RBR and gyration level have 

significant effects on all three dynamic modulus based performance index parameters. 

 The cumulative percent passing 4.75 mm sieve size, binder type and RBR can significantly 

affect the resilient modulus. 
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 While an increase in cumulative percent passing 4.75 mm sieve size can improve the 

fatigue life the percent passing 0.075 mm sieve size has an adverse effect on fatigue 

performance. 

 The increase in binder useful temperature interval (UTI) can improve the fatigue 

performance. 

 Increase in the effective binder volume (Vbe) and UTI can improve the SCB flexibility 

index. 

 The low temperature fracture energy is highly affected by mixture volumterics, binder type 

and cumulative percent passing 0.075 mm sieve. 

 Although the statistical analysis did not indicate the significance of the NMAS, in general, 

this parameter should still be considered as one of the most important factors in 

determining the mixtures performance as the total gradation of the mixture is a function of 

this value. The significance of this parameter was determined when cumulative percent 

passing 4.75 and cumulative percent passing 0.075 sieve sizes were removed from the 

regression analysis. 

 Resilient modulus has a medium negative correlation with all other index parameters of 

performance based destructive tests. 

 There is a strong positive correlation between Nf @ GR =100, FI, and low temperature 

fracture energy. 

 The three dynamic modulus based index parameters have medium to high correlations with 

their respective performance index parameters and can be potentially used as a preliminary 

checkpoint to adjust the mixture design before conducting other tests. 

It is well-known that asphalt mixtures are heterogeneous composites and the interaction among 

the mix design variables can significantly affect their performance. Therefore future work in 
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evaluating the mix design parameters should include the two and three way interactions of the 

variables to determine the significant factors. With respect to the three proposed dynamic modulus 

based performance index parameters, it is necessary to incorporate the phase angle of the response 

to gain stronger correlations with other performance index parameters and the appropriate 

threshold values need to be determined with respect to field distress data analysis. Also, as a 

significant future step, the temperatures at which the modulus values are determined should be 

adjusted with respect to the specific binder type, modifier and RAP content if applicable.   

The use of resilient modulus as the only rutting performance index in this paper may not 

be able to directly evaluate the mixtures rutting susceptibility as it is conducted in one loading 

frequency and considers the recoverable deformation, whereas rutting is a measure of permanent 

deformation, therefore it is necessary to use a more direct measure of rutting through conducting 

tests such as Hamburg wheel tracking test, asphalt pavement analyzer, flow number, etc.  
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Evaluation of Laboratory Performance and Structural Contribution 

of Cold Recycled Versus Hot Mixed Intermediate and Base Course 

Asphalt Layers In New Hampshire 
 

 
1Rasool Nemati, 2Eshan V. Dave, 3Jo Sias Daniel, 4Eric S. Thibodeau, 5Ryan K. Worsman 

 

 

ABSTRACT 

Depending on the local conditions and structural design of the pavement, multiple asphalt concrete 

layers including base, intermediate, and wearing courses are used. Typically, the base and 

intermediate layers have larger aggregate sizes and lower total asphalt binder contents as compared 

to the wearing course. Recently, cold recycled (CR) asphalt mixtures have gained attention as an 

alternative to the typical base, and to some extent intermediate courses, because of economic and 

environmental advantages. Challenges with CR include the potential high variability of recycled 

asphalt pavement (RAP) and lack of knowledge in terms of structural contribution and long term 

performance of such layers. This study investigates 4 different types of CR and 4 hot mixed plant 

produced asphalt mixtures (3 intermediate courses and 1 base course) that are typical mixtures 

used in New Hampshire. The laboratory performance evaluation is conducted through the resilient 

modulus (Mr), complex modulus (E*), semi-circular bend (SCB) and direct tension cyclic fatigue 

(S-VECD) tests.  Pavement performance prediction is carried out using the results from S-VECD 

approach in the FlexPAVETM software. The test results indicate that the performance of CR is 

highly affected by the amount of oil distillate percentage in the emulsion as well as the amount of 

                                                           
1 Ph. D. Candidate, Department of Civil and Environmental Engineering, University of New Hampshire, 33 Academic 

Way, Durham, NH 03824, ORCID: 0000-0002-5526-9838 
2 Associate Professor, Department of Civil and Environmental Engineering, University of New Hampshire, 33 

Academic Way, Durham, NH 03824, ORCID: 0000-0001-9788-2246 
3 Professor, Department of Civil and Environmental Engineering, University of New Hampshire, 33 Academic Way, 

Durham, NH 03824, ORCID: 0000-0001-5284-0392 
4 Bureau of Materials & Research New Hampshire Department of Transportation PO Box 483, 5 Hazen Drive   
5 Bureau of Materials & Research New Hampshire Department of Transportation PO Box 483, 5 Hazen Drive   



www.manaraa.com

 

B-2 
 

recovered binder in the RAP.  While having a relatively lower rutting resistance capability, the CR 

mixtures maintained an acceptable fatigue performance. As compared to CR mixtures, hot-mixed 

intermediate and base course mixtures indicated better rutting performance while having lower 

resistance to cracking.  

Keywords: Hot mixed asphalt, cold recycling, intermediate mixture, base mixture, performance 

prediction 

INTRODUCTION AND BACKGROUND 

Asphalt pavements are constructed from different types of materials with significantly different 

behavior which makes them complex structures for analysis and performance prediction. This 

complexity is not only because of the combination of these materials but also the diversities within 

the properties of one particular type of material which is a problem that needs to be considered in 

the design.  

Amongst all the materials in the pavement structure, asphalt mixtures are one of the most 

complicated materials for characterization purposes as they are composite materials with 

viscoelastic behavior. Depending on the loading and climatic conditions, the asphalt layer 

thickness can vary from 5 cm to over 30 cm. It is well known that the type and magnitude of stress 

varies within the depth of the pavement so there is need for different types of asphalt mixtures, 

each designed to handle specific types and magnitude of stress within the structure. This not only 

increases the design reliability but can also result in considerable savings in financial resources by 

optimizing material properties in each layer.  

Within the pavement structure, and depending on the design thickness, the asphalt course is 

generally divided into three sublayers namely the base, intermediate (binder) and top (wearing) 

layers. The wearing course is usually made of smaller aggregate size and higher binder content to 

prevent both functional and structural distresses.   



www.manaraa.com

 

B-3 
 

The intermediate and base courses contain relatively coarser aggregates and lower binder content. 

The intermediate layer is placed directly under the wearing course to facilitate the construction of 

the wearing course and to distribute the traffic loads onto a larger area.  This layer increases the 

overall pavement structural capacity and helps prevent the wearing course from different types of 

premature distresses (1,2). 

The asphalt base layer is very similar to the intermediate course in terms of the performance 

expectations. Base layers are used in addition to the intermediate layer in cases where the load 

magnitudes and repetitions call for a relatively thicker pavement. In this case the base layer 

provides a strong foundation for the overlaying lifts to prevent or reduce the risk of rutting and 

fatigue related distresses.  

At the end of the pavement service life, and depending on the overall pavement conditions, it is 

necessary to take the proper maintenance or rehabilitation action to upgrade the pavement 

serviceability. In many instances a hot mixed asphalt (HMA) overlay is used to cover the 

underlying distresses and enhance the pavement performance quality. A major issue with 

overlaying an aged or cracked pavement is the reflective cracking on the new overlay course. The 

reflective cracks initiate and propagate because of lateral horizontal movements of the overlay on 

the cracks as well as the concentrated vertical stress on the existing cracks which eventually result 

in premature cracks in the overlay (3, 4). 

To eliminate the risk of reflective cracking, pavement cold recycling (CR) has been used 

successfully over the last three decades as an alternative to the typical base material and to some 

extent intermediate layers. The cold recycling can result in up to 100% reuse of RAP as well as 

reduction in fuel consumption in the mix production process which can significantly reduce the 

construction costs (5). 

Significant work has been conducted with different researchers to develop mixture design 
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procedures for different types of emulsified and foamed CR mixtures (6). However most of these 

procedures are based on Marshal stability, indirect tensile strength or resilient modulus of the 

mixtures (7) which may not be considered as performance tests.  Recent studies have shown an 

improved pavement life cycle when rehabilitation is conducted using cold-recycling and 

reclaiming as opposed to use of mill and overlay treatments (8). Some important issues are the 

selection of the appropriate emulsion type, the high variability in the RAP in terms of age and 

binder chemistry, and the selection of the proper laboratory curing method to simulate the field 

condition; these all make the mix design and laboratory performance testing a challenging task. 

Nevertheless, the main structural concern with CR is generally reported to be rutting susceptibility 

and the required curing time after compaction (9, 10). Research studies have been conducted to 

investigate the fatigue performance of CR mixtures, including use of digital image correlation (11). 

However, it is more common to use the indirect tensile stress test to evaluate the CR fatigue 

performance (12). The semi-circular bend (SCB) test as an indicator of mixture fracture properties 

has also been implemented to evaluate the effect of emulsion content on the CR cracking properties 

(13). 

The main objective of this study is to evaluate and compare the performance properties and 

structural contribution of conventional HMA intermediate and base course mixtures with the CR 

mixtures. This comparison is conducted through laboratory based mechanistic and performance 

prediction tests such as resilient modulus (Mr), complex modulus (E*), semi-circular bend (SCB), 

and direct tension cyclic fatigue (S-VECD). In addition, mechanistic pavement modeling is 

conducted through the finite element based software FlexPAVE TM to evaluate the structural 

contribution and the predicted fatigue life of different mixtures in this study. The relative 

performance of the various CR mixtures is also evaluated with respect to the mixture composition 

and emulsion quality. 
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MATERIALS AND METHODOLOGY 

In order to evaluate and compare mixture performance, 2 CR mixtures and 4 plant produced HMA 

mixtures (3 intermediate courses and 1 base course) that are commonly used in New Hampshire 

were selected. The CR mixtures (denoted as CM-1 and CM-2) are produced by mixing recycled 

asphalt pavement (RAP) with MS-4 emulsion for 5 minutes using a Wirtgen twin-shaft pugmill 

mixer (model WLM30) in the laboratory. The MS-4 emulsion is an anionic medium setting 

emulsion which is specified by New Hampshire Department of Transportation (NHDOT) (14). In 

addition, two emulsions that did not meet the AASHTO T 59 minimum requirement of 2% oil 

distillate were included in the study to investigate the effect of the oil distillate percentage on 

performance.  These two mixtures are denoted as CM-1-a (1% oil distillate emulsion) and CM-2-

a (1.25% oil distillate emulsion).  Two different sources of cold central plant recycled (CCPR) 

material with different nominal maximum aggregate size (NMAS) (19 mm for CM-1 and 12.5 mm 

for CM-2) were used in fabricating the CR mixtures in the lab. The RAP used in lab testing was 

sampled from the field and is representative of the material used in actual pavement construction 

at two sites. The age of the RAP is unknown. Based on the QA documentation, the binder content 

for RAP used in CM-1 and CM-1-a ranges from 4.8% to 5.45%, while the RAP source used for 

CM-2 and CM-2-a contains 6.3% binder. 

The CR mixtures were fabricated to replicate the mixtures produced for actual construction. The 

mix designs were conducted by pavement contractors for CM-1 and CM-2 using Marshall stability 

criteria to determine the optimum binder content. In the CR mixture design procedure the moisture 

content of the RAP was not altered to achieve the maximum density, rather the design was 

conducted at the existing moisture level of about 1.75% for both mixtures. The logic for this is that 

many construction projects are utilizing the cold in-place recycling (CIR) technique where addition 

of water to the RAP is impractical.  
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In order to eliminate the effect of compaction method as a variable in comparing the performance 

of CR and HMA mixtures to each other, the CR specimens were fabricated using a Superpave 

gyratory compactor to achieve 10±0.5% air void level to replicate typical air void content in the 

field for these materials. The specimens were cured for 7 days at room temperature and 

subsequently cured 3 days in an oven at 40°C. The 7-day room temperature curing assures that the 

specimen has gained enough strength before it is placed in the oven so that it will not fall apart 

during the second phase of the curing. The oven curing process follows the Wirtgen method that 

ensures specimens reach a constant mass before testing (15). 

The selection of the intermediate and base course HMA mixtures is to include typical binder type 

and NMAS used in the region. The New Hampshire Department of Transportation (NHDOT) 

divides the state into three different climatic zones where PG 58-34, PG 58-28 and PG 64-28 are 

generally used for northern, middle and southern parts of the state respectively. Therefore, for this 

study the intermediate mixtures with relatively similar aggregate gradation and mixture design 

properties with different binder PG grades were selected from different areas of New Hampshire. 

This selection facilitates the comparison between the mixtures with respect to the binder type and 

aggregate size and their effect on the mixture performance separately.  

The HMA intermediate and base course materials were sampled in the form of loose mix from 

plants. The mixtures were reheated and compacted specimens were fabricated using Superpave 

gyratory compactor at 6±0.5% air void level, which is the typical field value in New Hampshire. 

The mixture design properties and gradations are shown in Table 1 and Figure 1 respectively. The 

amount of RAP in the intermediate and base mixtures is reported as the percentage of recycled 

binder in relation to the total binder content.  

The intermediate mixtures have similar mix design and overall aggregate gradation properties. The 

25 mm NMAS base mixture has a coarser gradation compared to the intermediate mixtures. There 
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are two curves associated with each of the CR mixtures. The RAP curves are the black rock 

gradation values before the binder extraction and the aggregate curves are the gradation of RAP 

aggregate after binder extraction.  

TABLE 1 . Mixtures Design Properties 

  
(1) Percentage of oil distillate in the emulsion equal to the minimum requirements of 2% as per NHDOT MS-4 requirements. 

(2) Percentage of oil distillate in the emulsion below the minimum requirements of 2% as per NHDOT MS-4 requirements. 

(3) Undiluted emulsion amount by weight of total mix 

(4) Minimum = 65% 

(5) Minimum =200 

(6) 2.0 ≤ oil distillate% ≤7.0 
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28 
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34 
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28 

PG 64-

28 
MS-4 MS-4 MS-4 MS-4 

NMAS (mm) 19 19 19 25 19 19 12.5 12.5 

Asphalt (%) 4.8 4.6 4.4 4.8 4.0(3) 4.0(3) 4.0(3) 4.0(3) 

Va(%) 4.0 4.0 4.0 4.0 10.0 10.0 10.0 10.0 

VMA 

(%) 
15.0 15.0 14.9 14.8 ---- ---- ---- ---- 

VFA 

(%) 
68.6 67.3 73.1 72.9 ---- ---- ---- ---- 

Vbe(%) 10.3 10.1 10.9 10.8 ---- ---- ---- ---- 

Gyration 75 50 75 50 35 32 30 35 

RAP 

(%) 
20.8 21.7 19.6 20.8 100.0 100.0 100.0 100.0 

Emulsion 

Residue (4) (%) 
---- ---- ---- ---- > 65 67.4 > 65 65.6 

Penetration at 
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FIGURE 1. Mixture Gradation Properties 

 

TEST RESULTS AND DISCUSSION 
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this mixture has a coarser gradation and similar binder content compared to B-64-28, the effect of 

compaction level (50 gyrations for BB-64-28 and 75 gyrations for B-64-28) is evident. 

The CM-1 and CM-1-a mixtures have similar modulus values while the CM-2 mixture is softer 

than the CM-2-a mixture. The effect of the distillate amount changes for the two mixtures. 

Although CM-2 has a finer gradation and the RAP has more binder compared to CM-1, it has a 

higher Mr value. These results are likely due to differences in the RAP sources; other studies have 

shown that the chemical interaction between the emulsion and the RAP binder will be significantly 

different depending on the age and chemistry of the binder in the RAP (16). This illustrates that 

the RAP age and binder chemistry can have a greater effect than other factors such as the 

emulsion’s oil distillate percentage or even the maximum aggregate size on the CR mixture 

properties. Mr is correlated with rutting susceptibility (17), so the results indicate that the CR 

mixtures can be expected to have lower rutting resistance than HMA mixtures.  

 

 

FIGURE 2. Mr Test Results (Error bars represent 1 standard deviation interval) 

Complex Modulus (|E*| And Phase Angle) 

Complex modulus testing was performed in accordance with the AASHTO T342 standard using 

an Asphalt Mixture Performance Tester (AMPT). The two components of complex modulus are 
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frequencies (25, 10, 5, 1, 0.5, 0.1Hz). All CR mixtures except CR-1 exhibited substantial 

permanent deformation (creep) at the 0.1Hz and 37.8°C test condition and this data point was 

removed from the analysis.   

The |E*| and δ master-curves are depicted in Figure 3 and Figure 4, respectively. The master-

curves were constructed at a reference temperature of 21.1°C to compare and evaluate the 

rheological properties. In Figure 3a, the B-64-28 (75 gyration) mixture is the stiffest along all the 

frequencies whereas the B-58-34 (50 gyration) mixture is the softest through the middle 

frequencies. The BB-64-28 (50 gyration) mixture is softer than B-64-28 (75 gyration) and B-58-

28 (50 gyration) mixtures even though it has a coarser gradation and larger NMAS with similar 

mixture asphalt content and effective binder volume. This illustrates the effect of design gyration 

level on the HMA mixture properties.  

Similar trends exist with the HMA phase angle master curves. The B-58-28 (75 gyration) and BB-

64-28 (50 gyration) mixtures are very similar. The B-58-28 (75 gyration) has a softer binder, finer 

gradation and smaller NMAS compared to BB-64-28 (50 gyration) mixture (Table 1) While all 

these factors should result in a softer mix, the higher design compaction level led to a lower binder 

content, resulting in a decreased phase angle and increased modulus. This shows that binder 

content (and compaction level) can supersede the effects of larger aggregate size and coarser 

gradation when considering the mix stiffness. 

The CR mixtures have comparable |E*| master-curves with CM-2-a being stiffest of four. The 

amount of oil distillate percentage has consistent impact on changing mixture stiffness.  The CR 

mixtures with higher oil distillate percent emulsions have lower stiffness, for example, at 21.1°C 

and 10 Hz, the |E*| of CM-1 mixtures is 20.3% lower than CM-1-a, whereas at same temperature 

and frequency, CM-2 has a 40% lower |E*| than CM-2-a. The oil distillate percent has a greater 

effect on the CM-2 complex modulus; this agrees with the Mr results. The difference in the 
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response of the two mixtures is likely due to the effect of interaction between the RAP binder and 

emulsion. 

The modulus values of CR mixtures are approximately half of HMA mixtures and the phase angles 

are higher in the mid to high frequency ranges. The higher relative viscous component of the 

response can be considered as a positive feature for CR mixtures which will be discussed in the 

next sections. On the other hand, and as indicated from the Mr results, the low stiffness of the CR 

mixtures at high temperatures and low frequencies indicates a greater susceptibility to rutting. 

 

FIGURE 3. Dynamic Modulus │E*│ Master-Curves at Reference Temperature of 21.1°C: 

a) HMA Mixtures, b) CR Mixtures 
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FIGURE 4. Phase Angle Master-Curves at Reference Temperature of 21.1°C: 

  a) HMA Mixtures, b) CR Mixtures 
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of variations (COV) for HMA mixtures with 19 and 25 mm NMAS in this study is expected. In 

general, the HMA mixtures have much larger fracture energy compared to the CR mixtures due to 

their stiffness and much higher peak load before the crack initiation during the test.   

The flexibility index (FI) values show that the stiffer B-64-28 mixture (75 gyration) has the lowest 

FI and the B-58-28 (75 gyration) and B-58-34 (50 gyration) mixtures have the highest FI values, 

following the same trend as dynamic modulus.  The CR mixtures have FI values that are similar 

to those for the HMA materials; the CM-1 did not show an inflection point on the post peak side 

of the load-displacement curve and therefore the FI cannot be calculated for this mixture. However, 

it should be mentioned that the combination of SCB testing temperature (25°C) and relative 

softness of the CR mixtures resulted in noticeable creep in specimens, surface indentation was 

observed in tested specimens under loading head and at supports.  This could invalidate the 

flexibility index calculation. Nevertheless, the higher RAP asphalt content of CM-2 mixtures likely 

explains higher FI values. The effect of oil distillate percentage is evident in the fracture energies 

for CM-1 mixtures and in the FI values for the CM-2 mixtures.  

  

 

FIGURE 5. (a) Fracture Energy, (b) Flexibility Index (Error bars represent 1 standard 
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deviation interval) 

Direct Tension Cyclic Fatigue (S-VECD) 

The simplified viscoelastic continuum damage (S-VECD) approach was utilized in accordance 

with the AASHTO TP 107 testing method to evaluate fatigue characteristics. Four specimens were 

tested at different strain levels under direct tension cyclic test in constant crosshead displacement 

mode. The testing temperature for the HMA mixtures is determined based on the binder PG grade. 

Since the binders in the CR mixtures do not have a known PG grade, the test temperature was 

selected to be 21°C for all the CR mixtures.  

The damage characteristic curve (DCC) is the main output of S-VECD testing and is a fundamental 

mix property that is independent of testing temperature and loading mode. The DCC represents 

the relationship between the asphalt mixture’s material integrity (called the Pseudo stiffness, C) 

and the level of damage over time, S (19). The DCC curve provides important information such 

as the rate and amount of accumulated damage and the mixture terminal integrity before the crack 

localization, but cannot reliably be used by itself to rank mixtures (20). A direct comparison with 

respect to these curves not appropriate since the number of cycles to failure (Nf) is missing in 

between curves and more detailed information is required for a better interpretation of the results. 

In other words, two mixtures could have very similar DCC curves with similar terminal C and S 

values, while the rate of damage accumulation due to each loading cycle could be different. 

Therefore, different S-VECD based fatigue failure criteria have been proposed by researchers to 

rank mixtures. The two widely accepted failure criteria with the S-VECD approach are the rate of 

averaged dissipated pseudo strain energy (GR) and the average reduction in pseudo stiffness (DR) 

(21, 22). It has been shown that the DR criterion may better and more reliably explain the mixture 

fatigue properties as it eliminates the extrapolation problems caused by using the GR parameter in 

a logarithmic scale (23).  As a result, this study uses the DR criterion to compare the mixtures 
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fatigue performance. DR is the slope of the accumulated reduction in pseudo stiffness versus 

number of loading cycles to failure in arithmetic scale and it generally varies from 0.3 to 0.8 where 

the higher slope value indicates better fatigue resistance (22).   

The DCCs and DR failure criterion are shown in Figure 6(a) and 6(b), respectively. The DCCs are 

clustered by mixture type with the HMA mixture curves further towards the upper right. As 

mentioned earlier, a direct comparison between the mixtures with respect to DCC curves is almost 

impossible, however, the fitting coefficients of the DCC curves are used as the primary input in 

the mixtures structural modeling through S-VECD approach which will be discussed in the next 

section.  

The DR values are also clustered by mixture type. The HMA mixtures have values ranging from 

0.31 to 0.39, which is typically considered poor for fatigue performance (21). Although the B-58-

34 has a softer binder and is expected to have better fatigue performance than the other HMA 

mixtures, the lower amount of binder content, slightly higher recycled binder replacement and the 

stiffening behavior on the mid to high ranges of frequencies on the |E*| master-curve likely 

contributed to the overall ranking. The relative DR ranking for the other three HMA mixtures can 

be directly correlated with their |E*| master-curves. The stiffer mixtures that maintain higher phase 

angles, such as B-64-28 (75 gyration) and BB-64-28 (50 gyration), are more fatigue resistant 

mixtures. 

The CR mixtures have DR values ranging from 0.54 to 0.67, which are values typically observed 

for wearing courses with good to excellent fatigue performance in the lab (21). This indicates that 

it may be beneficial to use CR mixtures closer to the surface course which could result in 

substantial cost savings. The DR values show a nearly inverse ranking trend as compared to 

resilient modulus (Figure 2) with softer mixtures having higher DR values. Lower distillate oil 

percentage results in a higher DR value for CM-1-a mixture while resulting in a slightly lower DR 
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value for the CM-2-a mixture. 

 

 

Figure 6. (a)Damage Characteristic Curve C vs S (b) DR Fatigue Failure Criterion 

Structural Modeling 

Although failure criteria such as DR are useful tools to compare and rank the mixtures with respect 

to the predicted performance, pavement structural modeling is needed to project field performance 

because the loading and climatic conditions also dictate the amount of damage that occurs. A finite 

element based pavement structural modeling software, FlexPAVETM (formerly known as LVECD) 

is used to model and predict the fatigue performance using the S-VECD model (24, 25, 26). The 

asphalt layer is divided into a mesh of 1000 elements (100×10) to determine the critical response 
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and damage calculations (27, 28). The DCC and the DR value are used by the software to calculate 

the damage factor (DF) and determine the number of failed elements (defined as DF=1). Equation 

1 indicates the damage factor calculation for a DR based analysis in FlexPAVE TM.  

       𝑫𝒂𝒎𝒂𝒈𝒆 𝑭𝒂𝒄𝒕𝒐𝒓, 𝑫𝑭 = 
𝟏−𝑪𝒂𝒗𝒆

𝑫𝑹
                                                                   Equation 5 

Where:  

Cave = Average pseudo stiffness per cycle up to the current number of loading cycles 

DR= Average reduction in pseudo stiffness up to failure 

Simulation Results and Discussion 

A typical cross section was selected for the modeling purposes; a commonly used wearing course 

in New Hampshire is used for all runs while the study mixtures are used as the intermediate/base 

asphalt layer for comparison purposes. The design parameters, cross section details and the results 

from FlexPAVETM analysis are shown in Figure 7. The graph shows the evolution of cracking in 

terms of number of failed elements (DF=1) during the 20 year design life. As part of the outputs of 

the software, the damage level in each finite elements is also provided to track the extent and 

location of damage at any time during the simulated pavement life. All simulations showed that 

the predicted distress was a bottom-up type of fatigue cracking and no failure points were predicted 

in the wearing course. 

The analysis shows the two CR mixtures with lower oil distillate percentage (CM-1-a and CM-2-

a) to have the best performance with the B-64-28 (75 gyration) and BB-64-28 (50 gyration) 

mixtures ranked next.  As expected from the DR results, the B-58-34 (50 gyration) mixture is one 

of the worst fatigue performing mixtures among the study mixtures. This mixture has a slightly 

higher binder content and higher effective binder volume with a softer binder PG grade as 

compared to the B-58-28 (75 gyrations) mixture. Intuitively, all these factors should result in a 
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better fatigue resistant mixture. However, compared to other intermediate courses, the B-58-34 (50 

gyration) mix has a slightly coarser gradation on the larger aggregate fraction side and a lower 

design level of gyration which may cause the observed poorer fatigue performance. The CM-1 

mixture has the worst performance of all of the mixtures even though it has a relatively high DR 

value. However, this mixture also has significantly low fracture energy and the FI could not be 

calculated from the SCB test results.  

In general, the overall ranking of the mixtures does not completely follow the ranking from DR 

criterion, but the rankings within each mixture type (HMA vs CR) does. This observation 

reinforces that although mixture property based failure criteria can be helpful in determining the 

overall mixture performance, they should not be used for comparison purposes by themselves, 

especially in cases where the production method is substantially different.  

Comparing the FlexPAVETM simulation to the complex modulus master-curves, the most fatigue 

resistant mixtures within each category have higher modulus values or phase angles. Considering 

the induced stress and strains in the pavement structure, the stiffness has a more significant effect 

on fatigue performance regardless of the production method. This confirms the general mixture 

design requirements that result in intermediate and base course asphalt mixtures that are stiffer 

than wearing courses. For instance, the B-64-28 (75 gyration) and BB-64-28 (50 gyration) and 

CM-2-a and CM-1-a mixtures have the highest modulus among the HMA and CR mixtures, 

respectively.  Intermediate and base course mixtures with higher stiffness have lower tensile strains 

at the bottom of asphalt layer, resulting in better fatigue performance. However, to make 

conclusion in a concrete manner, it is important to also consider other factors, such as properties 

of all pavement sub-layers (granular base, subgrade soil etc.), location of water table and critical 

distress type, since different circumstances might need a specific type of mixture design for an 

intermediate and base course layer.  
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FIGURE 7. FlexPAVE TM Analysis, Simulation Parameters and Cross Section Details 
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emulsion of MS-4 grade. Mechanistic and performance prediction tests such as resilient modulus 
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VECD) tests were conducted in order to compare the mixtures properties with respect to various 

distress types. Predicted performance of mixtures was compared to the general specification and 

0

50

100

150

200

250

0 50 100 150 200 250

N
u

m
b

er
 o

f 
F

a
il

u
re

 P
o

in
ts

 (
D

F
=

1
)

Pavement Life (Month)

B-64-28 B-58-34 B-58-28 BB-64-28

CM-1 CM-1-a CM-2 CM-2-a

Typ. Wear Course (12.5 mm)

Study mixtures

Granular Base
(Mr = 270 MPa)

Subgrade 
(Mr = 33 MPa)

Cross sectionSimulation Parameters

Design Life: 20 years
Vehicle speed :27m/s
Tire load: single axle, 80 kN
Tire Pressure :690 kPa
Tire imprint shape: Circular
Equivalent Single Axle Load : 2.99 × 106 ESALs 
Growth rate: 0%

5 cm

10 cm

15 cm



www.manaraa.com

 

B-20 
 

mixture design properties such as binder type and content, aggregate size and gradation as well as 

design gyration level for HMA mixtures. The CR mixtures were compared with respect to the RAP 

binder content and the composition of the MS-4 emulsion in terms of the percentage of oil 

distillate. To determine the structural contribution of the study mixtures, mechanistic pavement 

simulations were conducted using the FlexPAVETM software.  A typical cross section was modeled 

using a conventional HMA wearing course on top and study mixtures as intermediate/base layers 

in the cross section.   

The following conclusion are drawn on the basis of test results and performance 

evaluations:  

 The low stiffness of CR mixtures, as measured by the resilient modulus, indicates that they 

will be more susceptible to rutting than the HMA mixtures. The complex modulus test 

results indicated that the CR mixtures have relatively lower stiffness (nearly 50% lower) 

compared to HMA mixture along all measurement temperatures and frequencies. 

 Based on the SCB test results, no consistent trends were observed with respect to the effect 

of mix properties and compaction level for HMA and CR mixtures. This could be because 

of relatively higher variability of the test results for CR mixtures with larger NMAS as 

compared to wearing course mixtures with smaller NMAS. 

 The S-VECD fatigue results using the DR failure criterion indicate that the CR mixtures 

would be expected to have better fatigue resistance than the HMA mixtures. 

 The pavement simulation results agree with the overall expectations of the mixtures with 

respect to the lab performance test results and mixture design properties (such as better 

fatigue performance for mixtures with higher binder contents, greater stiffness or stiffer 

binder types and mixes with higher phase angles). Although the overall ranking from the 

FlexPAVETM analysis is slightly different from that of the fatigue failure criterion (DR), 
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the ranking within each mix type category (i.e. only HMA or only CR) closely follows the 

DR ranking. 

 In general, performance of CR mixtures appears to be more influenced by the RAP source, 

RAP binder properties and emulsion type and content rather than the RAP gradation. 

 Lower oil distillate percentage in the emulsion does not appear to have a significantly 

negative effect on the measured properties of the CR mixtures and in limited cases it might 

even improve the performance. More data and a specific study of the RAP binder chemistry 

and emulsion properties is essential to confirm this observation. 

Although the lab performance tests and FlexPAVETM performance predictions can be considered 

as reliable tools in evaluating and ranking mixtures with respect to the specific distress types, they 

may not be able to completely simulate the actual field conditions because of the wide variations 

in the loading and climatic circumstances.  As a result, some mixtures may perform significantly 

different from what is observed through the laboratory testing. Therefore, as a future step in this 

study, the results from the lab tests and mechanistic simulations should be compared to the field 

distress data to confirm the conclusions drawn in this research. The mixtures used in this study 

have been placed in the field as part of pavement projects that were constructed in 2016 and 2017. 

Continued monitoring of these projects is planned and in future field performance will be 

compared with the results presented herein. The field data is also essential to adjust the mix design 

properties with respect to the desired performance of intermediate and base course mixtures. In 

order to make comparisons between the mixtures, a single identical pavement cross-section was 

utilized in this study, in future it is recommended that different typical cross-sections, traffic levels 

and locations be evaluated to develop recommendations for use of intermediate/base courses that 

are tailored to specific pavement cross-section types, location and traffic levels. There are different 

types of additives such as cement and lime that are used to stabilize the CR mixtures and improve 
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their rutting performance, therefore, in future it is of utmost importance to evaluate the effect of 

such additives in fatigue performance of CR mixtures. 

Due to the increasing traffic loads along with higher demands for greater amounts of RAP in the 

mixtures, the asphalt mixture design processes are moving towards use of performance tests in 

determining the optimum binder content to satisfy multiple competing distresses such as rutting 

and cracking at the same time. The results from this research can help pavement engineers to gain 

a better perspective of the influence of mix design parameters in the mixtures performance while 

it can facilitate the development and implementation of performance-engineered mix design for 

intermediate and base course layers. 
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NOMINAL PROPERTY BASED PREDICTIVE MODELS FOR 

ASPHALT MIXTURE COMPLEX MODULUS (DYNAMIC 

MODULUS AND PHASE ANGLE) 

1Rasool Nemati, 2Eshan V. Dave 

ABSTRACT  

Dynamic modulus (|E*|) and phase angle (δ) are necessary for determining the response of asphalt 

mixtures to in-3service traffic and thermal loadings. While a number of |E*| and δ predictive 

models have been developed, many of them require lab measured properties (e.g. binder complex 

modulus). The majority of previous work has focused only on prediction of |E*|, limited models 

exist for prediction of δ. This research utilized generalized regression modelling of lab 

measurements (from 81 asphalt mixtures) to develop and verify prediction models for |E*| and δ 

using only nominal asphalt mix properties that are readily available during the initial mixture 

design and specification process.  

Paper Highlights 

- Provides models that use only nominal inputs to make reliable property estimates during 

design phase 

- Presents generalized regression framework for developing asphalt property prediction 

models 

- Model is verified through statistical comparisons and comparisons with other predictive 

models 

- Application of proposed model for pavement performance prediction is demonstrated 
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Key Words: Dynamic modulus, phase angle, prediction models, asphalt mixture, generalized 

regression. 

INTRODUCTION AND BACKGROUND 

Complex modulus (E*) is one of the most commonly used property of asphalt mixtures for 

conducting pavement analysis and modelling. Two components of complex modulus are, dynamic 

modulus (|E*|), which describes materials stiffness at given temperature and frequency, and phase 

angle (δ), which describes the extent of viscous and elastic behavior of the material at a given 

temperature and loading frequency. Laboratory measurements of |E*| and δ are commonly done at 

different temperature and frequency combinations using AASHTO T342 procedure. An |E*| 

master curve is the primary asphalt mixture input in the current AASHTO PavementME design 

procedure.  

Although |E*| and δ can be effectively used to predict the long term performance of asphalt 

mixtures using mechanistic analysis, there are limitations related to equipment requirements, 

specimen fabrication complexity, data analysis and other expenses in terms of man-power and time 

requirements. These limitations have severely restricted wide-spread usage of mechanistic 

empirical and mechanistic pavement analysis and design. In order to alleviate expensive and time-

consuming laboratory testing requirements, a number of predictive equations for |E*| have evolved 

during the last three decades. Two of the most popular predictive equations for dynamic modulus 

are the Witczak model (1) and the Hirsh model (2). Most of these predictive equations are based 

on regression analysis of large datasets and use the volumetric properties of mixtures along with 

the binder dynamic shear modulus (G*) as their primary input. While there are several models to 

predict |E*|, there have been far fewer attempts to predict δ. 
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A distinguishing factor the for research and the prediction model presented herein as compared to 

previous research is that here only nominal properties of asphalt mixtures, such as nominal 

maximum aggregate size, air void content, asphalt content, the percentage of recycled asphalt 

pavement (RAP) and recycled asphalt shingles (RAS) and asphalt binder performance grade (PG) 

are used in model development. These parameters are often readily available during the initial 

phases of asphalt specification and mix design process. The use of PG grades in lieu of other 

rheological properties of binder like viscosity and complex shear modulus (G*) as a continuous 

factor in the model is logical, since binder PG grade (if not modified) has its own definite 

rheological characteristics that will impact mixture stiffness. For example, a PG 64-28 in the same 

temperature and loading condition for a given mix is expected to result in a stiffer (higher |E*| and 

lower δ) mixture compared to a PG 58-34. This simply means that actual rheological performance 

of a binder is expressed by the binder’s PG grade. Therefore, the information based on PG can be 

utilized in a predictive model to capture the viscoelastic behavior of the mix. The use of NMAS 

instead of gradation of the aggregate relies on the fact that any dense graded aggregate with a given 

NMAS has to be in a specified gradation band to be adopted for construction purposes. Thus, the 

NMAS itself could be an indicator of the general gradation and can be used as a predictor in the 

model. Using these simple properties as effective factors in the model, the outcome not only 

eliminates the need for even simple lab tests, but also provides the pavement design engineers with 

a tool for specifying asphalt mixture that would yield the best performance and the lowest cost-

benefit ratios. The development of phase angle prediction model used the same nominal mix 

properties as described, with the exception of |E*|. This additional variable in prediction of δ was 

deemed necessary to be included during the initial model development trials. The existence of this 

variable is inevitable since δ is related to |E*| as discussed by Rowe et al. (3) and Oshone et al. (4). 
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In the initial development of the model, this research used lab measured |E*| values for the 

prediction of δ, however, the proposed model can effectively use predicted |E*| values  

As one of the most comprehensive equations for prediction of |E*|, the Witczak 2006 model (1) 

shown below in Equation 1 is applicable over a wide range of temperatures and frequencies. This 

model is a revised version of the Witczak 1999 model in which the viscosity-temperature 

susceptibility (VTS) method which assumes a linear relationship between temperature and log of 

viscosity is implemented to characterize the behavior of mixture. This assumption is generally 

valid for unmodified binders. However, for modified binders it may not be applicable. Thus, this 

approach could suffer from lack of accuracy when used for characterization of viscoelastic 

behavior of modified binders (5). Several studies have been conducted to calibrate these predictive 

models based on local mixtures and binder types (6). The Hirsch model alleviates some of these 

short-comings by using binder G* which is applicable for both modified and conventional binders 

 

𝐿𝑜𝑔|𝐸∗|=−0.349 + 0.754(|𝐺𝑏
∗|−0.0052 )6.65 − 0.032𝑃200 + 0.0027𝑃200

2 + 0.011𝑃4 − 0.0001𝑃4
2 

                                                                       +0.006𝑃38 − 0.00014𝑃38
2 − 0.08 𝑉𝑎 − 1.06 (

𝑉𝑏𝑒𝑓𝑓

𝑉𝑏𝑒𝑓𝑓+𝑉𝑎
) 

  

 

+
2.558+0.032 𝑉𝑎+0.713(

𝑉𝑏𝑒𝑓𝑓

𝑉𝑏𝑒𝑓𝑓+𝑉𝑎
)+0.0124𝑃38−0.0001𝑃38

2−0.0098𝑃34

1+𝑒
(−0.7814−0.5785𝑙𝑜𝑔|𝐺𝑏

∗ |+0.8834 𝑙𝑜𝑔δ𝑏
                (1)             

Where: 

|E*| = Asphalt mix dynamic modulus (psi), 
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Va = Air voids in the mix (% by volume), 

Vbeff = Effective binder content (% by volume),  

P200 = % Passing # 200 (0.075 mm) sieve, 

P4 = Cumulative % retained on # 4 (4.75 mm) sieve, 

P38= Cumulative % retained on 3/8 inch (9.5 mm) sieve, 

P34 = Cumulative % retained on 3/4 inch (19 mm) sieve.  

|𝐺𝑏
∗|  = Dynamic shear modulus of asphalt binder, (psi) 

δb = Phase angle of binder associated with |𝐺𝑏
∗|, (degree) 

 

The Hirsch model (2) is based on the Paul’s law of mixtures, which combines series, and parallel 

elements of the material phases. According to this law, asphalt concrete tends to behave like a 

series composite at high temperatures and as a parallel composite at lower temperatures. Equation 

(2) denotes the Hirsch model for predicting |E*|.  

|𝐸∗|=PC[4200000 (1 −
𝑉𝑀𝐴

100
) + 3|𝐺∗|𝑏𝑖𝑛𝑑𝑒𝑟 (

𝑉𝐹𝐴.𝑉𝑀𝐴

10000
)]+(1-PC)[

1−
𝑉𝑀𝐴

100

4200000
+

𝑉𝑀𝐴

𝑉𝐹𝐴.3|𝐺∗|𝑏𝑖𝑛𝑑𝑒𝑟
]

−1

   (2) 

And, 

Pc=
[20+

𝑉𝐹𝐴 .  3|𝐺∗|𝑏𝑖𝑛𝑑𝑒𝑟
𝑉𝑀𝐴

]
0.58

650+[20+
𝑉𝐹𝐴 .  3|𝐺∗|𝑏𝑖𝑛𝑑𝑒𝑟

𝑉𝑀𝐴
]

0.58                  (3)                                                                                     

Where: 

|E*| = dynamic modulus, (psi) 

|G*| binder = binder dynamic modulus, (psi) 

VMA= voids in the mineral aggregate, (%) 

VFA = voids filled with asphalt, (%) 
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PC = aggregate contact factor 

Recently some new approaches have been developed to predict |E*| using artificial intelligence 

tools and one of them is the Artificial Neural Networks (ANN) method (7). While this method has 

shown promising results with a high accuracy of prediction, there are some shortcomings such as, 

low convergence speed as well as lack of generalizing performance. In other words, even small 

changes in the input of the model could cause major effects in the model response. Furthermore, 

they might encounter an overfitting problem (8). Dynamic modulus has also effectively been 

predicted using the rheological models like Burger’s and Huet-Sayegh model (9). Other models 

have been constructed based on viscoelastic and time–temperature superposition concepts (10). 

Finite element based predictive models have been developed to predict dynamic modulus through 

modeling the effect of random aggregate arrangement during the compaction (11).  

A well-known predictive equation for δ is based on nonlinear regression analysis (12,13). There 

are two major limitations to this model, the first being that it uses 16 variables to build up the 

model that could be decreased. Secondly, this model uses two different regression equations to 

construct the δ master curve resulting in a break point at the peak value of the master curve which 

causes non-continuity at that point (14). 

This study presents a practical and simple approach to developing |E*| and δ prediction models 

using generalized regression analysis. Using this approach, |E*| and δ models that utilize only 

nominal properties of HMA mixtures have been developed for New England region of the United 

States. These properties are readily available during any preliminary mixture design procedure, 

which means that there would be no requirements for any type of lab tests. The attributes of the 

mixtures used in this study as well as a brief description of generalized regression platform and 

model development is discussed next in the paper. The predictive models are evaluated statistically 
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and their actual field applicability was assessed using a case study, these are presented later in the 

paper. 

RESEARCH APPROACH AND MATERIALS 

This study utilized 81 asphalt mixtures with diverse volumetric and constituent properties. All 

mixtures were designed according to the Superpave procedure (15) and tested following the 

AASHTO T342 (16) procedures in unconfined condition using an Asphalt Mixture Performance 

Tester. The mixtures represent materials from the New England region of the United States. Each 

test was conducted with three replicate specimens tested at three temperatures and six loading 

frequencies. Among the whole dataset, there are 27 mixtures that have been manufactured with 

the usage of modified binder and implementing the warm mix asphalt (WMA) production 

technology.  The mixture attributes and the test parameters are shown in Table 1. 

Along with the variable selection for the predictive models, principal component analysis (PCA) 

was performed on the correlations of variables and lab measured values of |E*| and δ. Correlation 

values from this analysis are presented in Table 2. The values shown in the table indicate the 

dependence of one factor on another in a numerical manner. Negative correlation coefficients 

indicate that the two variables are inversely dependent on each other. This type of analysis allowed 

for better understanding the relationship between the selected factors and the responses. Initially, 

it might appear that the correlations of individual independent variables with the |E*| and δ is low. 

It should be noted that in asphalt mixtures, which are composite materials, it is the interaction of 

the individual variables that has a significant effect on both |E*| and δ. In other words, |E*| and δ 

are direct functions of a mix design which is a combination of all the variables (Va, AC, NMAS, 

RAP, RAS etc.). Therefore, a general expectation of a high correlation between the response and 

individual mix related variables might not be true. For example, it was observed that the PGHT 

did not have a significant effect on the model whereas its interaction with the logarithm of 
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temperature is an effective term. Additionally, using these uncorrelated factors helps avoid the 

multi-collinearity problems, which might cause erratic p-values for the independent variables as 

well as incorrect relationship between the predicted response and the predictors. On the other hand, 

the temperature and loading frequency (referred to as the test related variables) can individually 

affect the viscoelastic behavior of the mix (17) and as Table 2 shows these two variables have high 

correlations with the response. The significance of the variable interactions is presented in the 

model development section. 
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Table 1- Scope of mixture attributes and test parameters in the dataset 

Predictive 

Model 

Type of 

Factor 

Name of 

Factor 
Abbreviation 

Number 

of 

Levels 

Level (Number of 

mixes) 
Min Max 

E* and δ 

Mixture 

Related 

Nominal 

Maximum 

Aggregate 

Size (mm) 

NMAS 3 9.5 (37), 12.5 (35), 19 (9) ---- ---- 

Air Void of 

Total 

Mixture (%) 

Va% 23 ---- 3% 9.63% 

Total 

Asphalt 

Content (%) 

AC% 14 ---- 4.70% 6.80% 

Recycled 

Asphalt 

Pavement  

(%) 

RAP 13 ---- 0% 40% 

Recycled 

Asphalt           

Shingle (%) 

RAS 2 12.2 (4), 11.1 (2) ---- ---- 

Binder High 

Temperature 

PG grade  

(°C) 

PGHT 3 64 (49), 58 (16), 52 (16) ---- ---- 

Binder Low 

Temperature 

PG grade  

(°C) 

PGLT 3 -34 (16), -28 (61), -22 (4) ---- ---- 

Test 

Related 

Logarithm of 

Loading 

Frequency  

(Hz) 

Log(Frequency) 6 
0.1, 0.5, 1, 5, 10, 25               

(81 at each) 
---- ---- 

Logarithm of 

Test 

Temperature  

(°C) 

Log(Temperature) 3 
3.9, 20, 35 (29);                      

4.4, 21.1, 37.8 (52) 
---- ---- 

δ 

 

 

Material 

Mechanical 

Property 

Logarithm of 

Dynamic 

Modulus 

Log(E*) ---- ---- ---- ---- 
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Table 2- Correlation matrix of variables 

Variables 

L
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) 

A
C

%
 

N
M

A
S

 

V
a
%

 

R
A

P
%

 

R
A

S
%

 

P
G

H
T

 

P
G

L
T

 

Log(E* (lab 

measured)) 
1.00 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 

Phase Angle -0.67 1.00 ---- ---- ---- ---- ---- ---- ---- ---- ---- 

Log 

(Temperature) 
-0.79 0.75 1.00 ---- ---- ---- ---- ---- ---- ---- ---- 

Log 

(Frequency) 
0.40 -0.12 0.07 1.00 ---- ---- ---- ---- ---- ---- ---- 

AC% -0.06 -0.09 -0.06 0.01 1.00 ---- ---- ---- ---- ---- ---- 

NMAS 0.04 0.13 0.04 -0.01 -0.85 1.00 ---- ---- ---- ---- ---- 

Va% -0.07 -0.01 -0.02 0.02 0.07 -0.14 1.00 ---- ---- ---- ---- 

RAP% 0.06 0.06 0.02 -0.02 -0.21 0.23 -0.08 1.00 ---- ---- ---- 

RAS% 0.003 0.05 0.01 0.01 -0.38 0.49 -0.08 -0.12 1.00 ---- ---- 

PGHT 0.06 -0.09 0.02 -0.01 0.27 -0.36 0.11 -0.36 -0.32 1.00 ---- 

PGLT 0.11 -0.06 0.06 -0.02 -0.03 -0.13 0.10 -0.14 -0.21 0.83 1.00 
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The analysis to build predictive models presented in this study was conducted using JMP PRO® 

software which is a statistics analysis tool. Generalized regression platform allows for fitting of 

penalized generalized linear models to data sets. The models are penalized in the sense that a 

penalty is added to the likelihood of the model. The penalizing equivalently constrains the sum of 

absolute values of the estimates and causes some of them to turn out to be zero, which helps in 

eliminating the redundant variables. Depending on the form of the penalty, this allows variable 

selection as well as shrinkage of estimators. Generalizing the models eliminates the need of normal 

distribution of response. This is useful, since in many instances there are responses which are not 

normally distributed. Generalized regression approach uses relationships between the dependent 

and independent variables using coefficients that can vary with respect to one or more grouping 

variables for non-normally distributed situations (18). 

Use of penalized regression also helps in lowering the number of effective terms in a model. In 

standard linear regression, having higher numbers of effective terms can easily cause an issue that 

is commonly referred to as overfitting. This means that the model will fit the observed data very 

well, but it will perform poorly on new observations. If a model is optimized by penalization, there 

would be certain benefits such as the better prediction of data by avoiding overfitting, as well as 

easier interpretation of the resultant model. The two main penalization methods are the “Lasso” 

and “Elastic-net”; both of these methods shrink some predictors to a nil or zero value. The Lasso 

method will tend to give a more parsimonious model than the elastic-net, while the Elastic-net can 

better handle collinearity than the lasso. Simulation studies and real data examples show that the 

Elastic-net method often outperforms the Lasso method in terms of prediction accuracy. In 

addition, the Elastic-net encourages a grouping effect, where strongly correlated predictors tend to 

be in or out of the model together (18,19). 
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The Elastic-net procedure was selected in this study as a penalization method due to its superiority 

in terms of variable selection and prediction accuracy. Optimal penalty values can be determined 

using different validation methods. In the present work, Bayesian Information Criterion was used 

due to its computational efficiency and ability to result in a parsimonious model (19). 

DEVELOPMENT OF DYNAMIC MODULUS (|E*|) AND PHASE ANGLE (δ) 

PREDICTION MODELS 

Prior to determination of the predictive models, the Mahanalobis distance analysis (20) was 

conducted on the whole dataset to assess data quality and to statistically identify outliers. Using 

this analysis, 237 data-points were excluded from the analysis resulting in a substantially unified 

dataset and an unbiased predictive model. Since |E*| is considered to be one of the variables for δ 

prediction model, the same outliers were also omitted in δ model development. The procedure to 

develop the model requires response distribution data to be provided to the statistical software. 

Figure 1 represents the distribution shapes for the logarithm of |E*|, |E*| and δ. Although the shapes 

of logarithm of |E*| and δ can be considered as gamma distributions, further trial and error attempts 

proved that using the normal distribution slightly improved the RMSE (Root Mean Squared Error) 

and goodness of fit (R2). 
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FIGURE 1. Distributions of (a) Logarithm of |E*|, (b) |E*| and (c) δ data used in model 

development. 

The next step in developing the model was to examine diverse types of combinations of factors to 

evaluate their significance as well as practical interpretability. Using this iterative process, the 

prediction models were developed. The prediction models for |E*| and δ are depicted in Table 3 

and Table 4 respectively. It can be inferred from the |E*| model that the test related factors and 

their interaction along with the quadratic effect of the logarithm of temperature have the highest 

impact on |E*|. Consequently, the mixture related factors are observed to have significant effects 

on |E*| except for the binder high PG temperature (PGHT). The |E*| and δ distribution plots 

indicate that more than 25% of the observations on |E*| range from 100-1000MPa and for δ from 

30 to 50º. These values normally indicate the results from the higher test temperatures. The main 

load-bearing component at higher test temperature (low loading frequency) is the aggregate. 

Usually aggregates used in HMA mixtures have similar mechanical properties that result in less 

variations in the observed values of |E*| and δ at higher temperatures. This is hypothesized to be 
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the cause for lower significant effect related to asphalt PGHT. However, both predictive models 

show that the interaction of PGHT with logarithm of temperature and logarithm of loading 

frequency are effective and that is another reason to keep the PGHT in the model. The reverse state 

happens for asphalt binder PG low temperature (PGLT) where there is a large variation in observed 

|E*| and δ values at lower testing temperatures. The analysis also shows that this factor has a high 

impact on both models. The predictive values of |E*| and δ can be calculated through the 

coefficients and equations shown in Table 3. Since the predictive models are based on the 

generalized regression, which is different from multiple regression analysis, the interaction of 

variables along with the independent variables can be effectively used. The |E*| predictive model 

has been built upon the logarithm of measured dynamic modulus which has resulted in small 

coefficient values in the model. 

 Measurements of δ in the lab are usually challenging and there is a higher variability 

associated to this mixture property, which makes the construction of a reliable and accurate 

predictive model more challenging. This resulted in the usage of a much higher number of effective 

terms in the model to increase the level of accuracy, which is still lower than the accuracy of the 

|E*| model. 
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TABLE 3- Predictive model for Dynamic Modulus (|E*|) 

  (|E*|) Predictive Model 

Active Factors (ai) 
Coefficient 

(bi) 

Standard 

Error 

Prob > 

ChiSquare 

1 Intercept 6.7176428 0.0976212 <0.0001 

2 Log (Temperature) -1.390417 0.007481 <0.0001 

3 Log(Frequency) 0.2716079 0.0021966 <0.0001 

4 (Log (Temperature)-1.20037)*(Log (Temperature)-1.20037) -1.395977 0.0207529 <0.0001 

5 (Log (Temperature)-1.20037)*(Log (Frequency)-0.26115) 0.1726025 0.0054005 <0.0001 

6 Va% -0.034862 0.0011471 <0.0001 

7 PGLT 0.0308918 0.0013407 <0.0001 

8 RAP% 0.0029715 0.0001347 <0.0001 

9 AC% -0.067239 0.0047671 <0.0001 

10 (Log (Temperature)-1.20037)*(PGHT-60.3887) -0.012624 0.001892 <0.0001 

11 (Log (Temperature)-1.20037)*(PGLT+28.9976) 0.0222484 0.0034946 <0.0001 

12 (Log (Temperature)-1.20037)*(RAS%-0.88064) 0.0081275 0.001892 <0.0001 

13 NMAS -0.004575 0.001164 <0.0001 

14 RAS% 0.0025448 0.0007382 0.0006 

15 PGHT -0.000955 0.0008396 0.2555 

                                                where:      ai= Coefficient    and   bi = values of active factors    (3) 

 

  

𝐿𝑜𝑔(𝐸∗) = ∑ a
i
b

i

15

𝑖=1
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TABLE 4. Predictive model for Phase Angle (δ) 

(δ) Predictive Model 
          

Active Factors (ci) 
Coefficient 

(di) 

Standard 

Error 

Prob > 

ChiSquare 

1 Intercept 74.252783 4.7805364 <0.0001 

2 Log(E*) -14.91529 0.5985993 <0.0001 

3 NMAS -104.083363 0.0738808 <0.0001 

4 (Log(E*)-3.33159)*(AC%-5.85508) -193.251436 0.0207529 <0.0001 

5 (Log(E*)-3.33159)*(PGLT+28.9966) -282.419509 0.3225955 <0.0001 

6 (NMAS-11.8035)*(AC%-5.85508) -371.587582 0.8088849 <0.0001 

7 Log(Frequency) -460.755655 1.6404459 <0.0001 

8 (Log(Frequency)-0.26128)*(PGHT-60.3898) -549.923728 0.0188966 <0.0001 

9 (Va%-6.52872)*(Va%-6.52872) -639.091801 0.0196971 <0.0001 

10 (Log(Frequency)-0.26128)*(Log(Frequency)-0.26128) -728.259874 0.1650034 <0.0001 

11 (Log(E*)-3.33159)*(Log(Frequency)-0.26128) -817.427947 0.7823135 <0.0001 

12 (AC%-5.85508)*(Va%-6.52872) -906.59602 0.0629724 <0.0001 

13 Va% -995.764093 0.0433031 <0.0001 

14 (Log(E*)-3.33159)*(RAP%-13.9445) -1084.932166 0.0188966 <0.0001 

15 Log (Temperature) -1174.100239 0.8280957 <0.0001 

16 AC% -1263.268312 0.2598378 <0.0001 

17 RAP% -1352.436385 0.0046111 <0.0001 

18 (RAP%-13.9445)*(AC%-5.85508) -1441.604458 0.0063719 <0.0001 

19 (Log(Temperature)-1.20042)*(PGHT-60.3898) -1530.772531 0.0441622 <0.0001 

20 (AC%-5.85508)*(AC%-5.85508) -1619.940604 0.2955319 <0.0001 

21 PGLT -1709.108677 0.0422435 <0.0001 

22 (Log(E*)-3.33159)*(Log(Temperature)-1.20042) -1798.27675 3.2845529 <0.0001 

23 (Log(Temperature)-1.20042)*(AC%-5.85508) -1887.444823 0.3712081 <0.0001 

24 (Log(Temperature)-1.20042)*(RAS%-0.88107) -1976.612896 0.0589393 <0.0001 

25 (Log(E*)-3.33159)*(Log(E*)-3.33159) -2065.780969 1.3394092 0.0002 

26 RAS% -2154.949042 0.0245643 0.0023 

27 (Log(Frequency)-0.26128)*(RAP%-13.9445) -2244.117115 0.0074356 0.0028 

28 (Log(Frequency)-0.26128)*(Log(Temperature)-1.20042) -2333.285188 0.8936574 0.0035 

29 (Log(Temperature)-1.20042)*(Log(Temperature)-1.20042) -2422.453261 2.3767651 0.0109 

30 (Log(Temperature)-1.20042)*(RAP%-13.9445) -2511.621334 0.0216374 0.0267 

31 PGHT -2600.789407 0.023707 0.3452 

                                                 where:   ci= Coefficient    and   di = values of active factors   (4) 

 

 

𝛿 = ∑ 𝑐𝑖𝑑𝑖  

31

𝑖=1
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EVALUATION OF PREDICTION MODEL CAPABILITIES 

To verify the |E*| and δ prediction models, a set of analyses were conducted to compare predicted 

values with lab measured values. The comparisons are made on unity plots where predicted and 

measured values are plotted against each other for the whole dataset. The “goodness of fit” 

statistics parameters such as the correlation coefficient (R2) and RMSE were calculated. The 

correlation coefficient indicates how well the regression line approximates the measured data 

points. RMSE is a way to measure the difference between predicted and measured values in a 

prediction model. Figure 2 shows the goodness of fit statistics for predicted |E*| (log and 

arithmetic) and δ with measured values respectively. A very high R2 and low RMSE for linear fit 

between predicted and measured E* values on log-log plot and the equation of linear fit to be very 

close to unity slope line (X = Y) reveals that model is fitted very well to the measured data. A 

small deviation in the linear fitting line for the predicted and measured E* (for both log-log and 

arithmetic scales) comes from the software number rounding when the log scale is changed into 

the arithmetic one. The actual values of |E*| range from 100-12200MPa, a RMSE of 833 indicates 

that only an average of 7% difference is anticipated between the predicted and actual |E*| values, 

this is well below typical laboratory variability.  

A high R2 of 0.83 for δ predictive model ranks it among the good correlations between the actual 

observations and the predicted values. The lab measured values of δ range from 9° to 45º and a 

RMSE of 2.94º expresses an average of 8% difference between the predicted and lab measured δ 

values in the dataset. 

In addition to comparing the complete datasets between measured and predicted values of |E*| and 

δ, further investigations were conducted for 6 mixtures. The mixtures were chosen to be 
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significantly different from each other in terms of constituents and the lab measured |E*| and δ. 

The properties of these mixtures are shown in Figure 3. 

Master curves of |E*| and δ were constructed at 21.1°C for Mixtures A-D and at 20°C for Mixtures 

E-F. All the shift factors were obtained by using a second order polynomial shift factor equation 

using rheological and viscoelastic analysis software RHEA (21).  

The sample standard deviation for each replicate at each test temperature and frequency was also 

calculated to obtain the high and low range of measured |E*| and δ. For each set of measured data 

(average, average + 1 standard deviation and average - 1 standard deviation), independent time-

temperature shifting was conducted and this yielded three master curves for |E*| and δ from lab 

data. These will be referred to as “Measured”, “Measured High Range” and “Measured Low 

Range” throughout the remainder of this report.  
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FIGURE 2. Measured and predicted (a) Log |E*|, (b) |E*| and (c) δ. 

A four parameter logistic regression sigmoidal equation was used to fit shifted data for 

constructing |E*| master curves. The fitting equation is shown below. 

𝐿𝑜𝑔 (𝐸∗) = 𝑐 +
[𝑑−𝑐]

[1+𝑒[−𝑎[𝐿𝑜𝑔(𝑓)−𝑏]]]
               (5) 

Where:  

y = x - 0.00015

R² = 0.951

RMSE = 0.11
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𝑓 = Load Frequency 

𝑎 = Growth Rate 

𝑏 = Inflection Point 

𝑐 = Lower Asymptote 

𝑑 = Upper Asymptote 

A Lorentzian peak equation was used to fit the shifted phase angle results to construct the δ master 

curves.  

𝛿 =  
[𝑎×𝑏2]

[[(𝐿𝑜𝑔(𝑓))−𝑐]
2

+𝑏2]
                   (6) 

Where: 

𝑓 = Load Frequency 

𝑎 = Peak Value 

𝑏 = Growth Rate 

𝑐 = Critical Point 

In order to calculate quantifiable differences between master curves from lab measurements and 

model predictions, sum of squared errors (SSE) were calculated for each of the six mixtures for 

both |E*| and δ. Eleven frequencies (0.001, 0.01, 0.1, 0.5, 1, 5, 10, 25, 100, 1000 and 10000Hz) 

were selected for SSE calculations. Also, for the purpose of visual comparisons of |E*| and δ on 

single plots, Black space diagrams have been prepared. The comparison plots for |E*|, δ and Black 

space are presented in Figures 3, 4 and 5 respectively.  
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FIGURE 3. Dynamic modulus (|E*|) master curves for six mixtures (master curves from 

average lab measurements; average + 1 standard deviation; average – 1 standard deviation; 

and model predictions are shown) 

Using the values of SSE/n statistics, the comparison plots of |E*|for the six mixtures show that the 

prediction equation for majority of mixtures yields values that are close to lab measured values 

and often within lab measurement variability. A majority of the deviation between measured and 

predicted |E*| is observed at very low frequencies. At these frequencies, the |E*| response of asphalt 
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mixture is often dominated by aggregate skeleton; the model presented here does not take into 

account aggregate size distribution and thus a small discrepancy is expected in this region. Overall, 

the SSE/n values are quite low indicating that the model predictions are quite close to |E*| from 

lab results. 

Considering the SSE/n values in case of δ, the model predictions at a majority of frequency ranges 

for all mixtures is close to the master curve from lab measurements. As with |E*|, there is some 

variation observed between predicted phase angle master curves and those generated using lab 

data in the lower frequency ranges. The differences are typically in the range of 2 to 5º, while 

typical lab variability of this measure is also about 5º. The average SSE/n values for all six mixtures 

are also relatively low with the highest being 107.6, which indicates average distributed prediction 

error of 10.4º. As described before, one major advancement in the current research over previous 

research is the δ prediction model. The majority of current |E*| prediction equations do not provide 

phase angle prediction and the ones that do provide it require viscoelastic characterization of binder 

for accurate prediction. In order to fully describe viscoelastic behavior of asphalt materials and to 

accurately calculate stress and strain response at different service temperatures and at different 

loading frequencies, it is critical to have δ master-curve.  

In recent years, Black space diagrams have been used for comparison of asphalt mixture 

performances, for example, work by Mensching et al. (22). In order to compare the model 

predictions with lab measurements for both |E*| and δ, Black space diagrams have been generated 

for the six mixtures discussed here (see Figure 5). The plots show very similar Black space 

response for model predictions and lab measured data. Thus, if Black space based performance 

prediction parameters are used for performance based specifications, the models proposed herein 

can be easily utilized for determining these parameters during the mix design stage. 
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Among the evaluated mixtures, C and D reveal a larger difference between the measured and 

predicted values of phase angle and this could be due to the usage of modified binder as well as 

implementing the warm mix asphalt (WMA) technology in manufacturing process of these mixes. 

Even so, with the use of WMA and modifiers, the predicted |E*| for these mixtures is close to the 

actual lab measurements. 
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FIGURE 4. Phase angle (δ) master curves for six mixtures (master curves from average lab 

measurements; average + 1 standard deviation; average – 1 standard deviation; and model 

predictions are shown) 
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FIGURE 5. Black space diagrams for six mixtures (lab measurements and model 

predictions) 
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FATIGUE PERFORMANCE ANALYSIS USING PREDICTED PROPERTIES 

To demonstrate the ability of the prediction models for purposes of pavement performance 

evaluation, a brief case study was conducted. This was also driven by the underlying intent of this 

research, which is to implement |E*| and δ prediction models for determination of the pavement 

performance as a combined asphalt mixture and pavement design tool. The case study used lab 

measured and predicted |E*| and δ values within simplified viscoelastic continuum damage (S-

VECD) framework for fatigue cracking performance evaluation. While the research presented here 

is very useful for conducting PavementME designs and analysis during mix design and selection 

phase, this research predicts more comprehensive mixture characterizations vis-a-vis |E*| and δ 

than what is needed for PavementME. For brevity only one mixture (Mixture A) from the previous 

section was selected for the fatigue performance analysis.  

The lab measured results of uniaxial fatigue testing from the selected mixture along with the |E*| 

and δ (lab measured and predicted) were used as the principal inputs for SVECD analysis. SVECD 

analysis resulted in damage characteristic curves (DCC) for mixture, DCC indicates the 

relationship between the asphalt mixture’s material integrity (called the Pseudo stiffness (C)) and 

the level of damage over time (S) (23). DCC were calculated using both measured and predicted 

|E*| and δ. 

While DCC is an indicator of how well the mixture can bear the applied loads and how damage 

progresses with repeated loading, the actual performance of a mixture also depends substantially 

on the pavement cross section, climatic conditions and material constitutive properties. In order to 

determine the pavement performance, an investigation was conducted using the layered 

viscoelastic pavement analysis for critical distresses (LVECD). This program utilizes the SVECD 

model to calculate the rate of strains and stresses over the life of pavement to make the performance 

predictions (24). During recent years this software has been widely used by many researchers in 
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predicting the fatigue performance of asphalt mixtures as well as determining how mix parameters 

affect its performance in actual field situations, for example recent work by Rastegar et al. (25). 

One of the main results from LVECD analysis is damage factor, this factor simply reveals that 

how much of a cross section has been damaged due to loading and other factors leading to 

pavement deterioration over time. Using Miner’s law, the number of points (evenly distributed 

regions of asphalt concrete over the simulation domain) where the damage factor is equal to one, 

or where asphalt concrete has fully damaged, is calculated over life of pavement.  

Two types of cross sections were analyzed using LVECD. Only the thickness of the asphalt layer 

was changed in these cross sections. Figure 6 presents the DCC and LVECD analysis results. As 

it can be seen from the figures, both measured and predicted |E*| and δ led to very comparable 

DCC. Additionally, in the context of pavement performance evaluation, the predicted results are 

not identical between measured |E*| and δ and predicted ones. However, the results are very 

comparable with each other. The pavement performances using the predictive |E*| and δ values at 

20 years are very comparable to the performance predicted using lab measured values for both thin 

and thick asphalt pavements. Thus, fatigue performance calculations from the predicted |E*| and δ 

are comparable to the measured ones for both cross sections, which is a good indicator of the 

applicability of the predictive models presented in this paper. 
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 FIGURE 6. LVECD and Damage Characteristic results 
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that even with lab measured binder properties both Witczak model and Hirsch model substantially 

over-predicted |E*| at lower load frequencies.  The generalized regression based model from the 

present study yielded |E*| master-curve to be very close to that generated from the lab 

measurements. 

 

FIGURE 7. Comparison of |E*| Predictive models 
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the pavement structure and material to lower life cycle costs. As previously mentioned, the models 

proposed here have been developed using the dataset gathered in the New England region, 

therefore the applicability of the regression coefficients presented herein may be limited to this 

region due to similarities in aggregate geological sources, binder grades and recycled asphalt 

material characteristics. However, the methodology behind the development of these models can 

be applied to other regions for development of regional prediction models. Although the dataset 

has been gathered for complex moduli of asphalt mixtures, it does not necessarily mean that the 

development of such models is associated to only complex moduli and only measurements made 

using AMPT device. In fact, the framework presented in this study can be applied to develop 

similar models for other material properties. It is also important to note that the use of prediction 

models does not necessarily result in full omission of conducting |E*| and δ lab tests, rather 

predictive models aid in lowering the amount of testing requirements as well as provide reliable 

estimate of properties when lab testing is impractical or not possible due to time or economic 

constraints. 

A practical application of the proposed model is for developing asphalt specifications and for 

conducting pavement structural design.  At present, a major hurdle in developing asphalt mix 

specifications on basis of mechanistic properties and conducting pavement structural designs using 

properties that reliably represent the actual mixture that will be produced and placed in the field, 

is unavailability of reliable prediction models that only use nominal properties to predict |E*| and 

δ.  While Hirsch model and Witczak model have been adopted, these require binder viscoelastic 

characterization for prediction.  Furthermore, as shown in this paper, even with binder viscoelastic 

characterization these models can fail to make reliable predictions. 
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Comparisons were made between lab measured data and the model predictions. While the same 

data was used for developing the model, this comparison provides verification of the model 

development process. Apart from visual comparisons, statistical comparisons were also conducted. 

To further ensure veracity of the models, six distinctly different mixtures were chosen and 

comparisons were made between model predicted and lab measured |E*| and δ. The predictions 

were mostly within one standard deviation lab variability of measured quantities. Finally, to 

demonstrate the application of the prediction model and to make further comparisons between 

model predictions and lab measurements, a case study is presented for two asphalt pavement cross-

sections and their predicted fatigue cracking performances. The results from this analysis 

demonstrates that the model predictions presented herein are capable of use in pavement 

mechanistic analysis tools and yield comparable results to those from lab measured properties. 

On the basis of the research results presented in this paper, the following conclusions can be drawn: 

 Generalized regression based methodology can be employed for developing dynamic 

modulus and phase angle prediction models that require only nominal asphalt mixture 

parameters as inputs; 

 The predictions from generalized regression based models match the lab measurements 

within typical lab variability; 

 Rheological indices for pavement performance can be easily calculated using the prediction 

models presented here, these indices can be used for performance based specifications; 

and, 

 Using prediction models presented herein, pavement designers can optimize asphalt mix 

specifications to increase reliability of pavement designs and to lower life cycle costs.  
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While this paper presented prediction models, their comparisons with lab measurements and a 

case study to demonstrate applicability of the models, there were several areas identified during 

this research that will further improve the applicability of this research and extend the findings 

further. Some of the future extension of the present research are the following: 

 The current models are developed for New England region; similar regional models can be 

developed for other part of United States and other countries. Notice that it is important to 

try to limit these type of models to a region, that way only nominal asphalt properties would 

be necessary as model inputs, otherwise the required number of inputs might become 

overwhelming.  

 In this work, the generalized regression based model development was applied to linear 

viscoelastic asphalt properties; future efforts should undertake similar model development 

for non-linear properties such as asphalt fatigue and fracture parameters. 

 Validation of the predictions models should be conducted using additional mixtures that 

are not part of the model development data set. Furthermore, field performance validation 

should also be conducted. 

 The other aspect of the future work is the improvement of the accuracy of the proposed 

models and especially the δ by using additional number of mixtures and calibrating the 

models in accordance to the newly added data. 

 Future predictive models can be developed within framework of analytical/physical models 

so that such model can thereafter be incorporated within mechanistic calculation 

algorithms.   
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DEVELOPMENT OF A COMPLEX MODULUS BASED 

RUTTING INDEX PARAMETER FOR ASPHALT MIXTURES 
 

1Rasool Nemati, 2Eshan V. Dave, 3Jo Sias Daniel 

 

ABSTRACT 

Different testing methods have been used to evaluate the rutting susceptibility of asphalt mixtures. 

Among them, loaded wheel testers, such as the Hamburg Wheel Tracking Test (HWTT), has 

shown to have promising correlation with the field rutting. Moreover, since rutting distress within 

pavement structure has a direct correlation with mixtures’ structural response to loading, the 

complex modulus (|E*| and phase angle) master-curves can be potentially used to estimate the 

mixtures rutting performance. This research introduces and investigates 5 different complex 

modulus based parameters to evaluate the rutting performance of asphalt mixtures. These 

parameters are developed based on two critical points on the |E*| and phase-angle master-curves. 

The first point is related to the frequency at which the peak phase angle happens and the second 

point is related to the reduced frequency on the master-curve which reflects the Hamburg Wheel 

Tracking Test (HWTT) testing conditions. The results from investigating 22 asphalt mixtures 

indicate that there is a strong correlation (R2=0.89) between the rutting and the rate of drop in |E*| 

with respect to changes in frequency between the two selected critical points which is called as 

Index III in this study. 

Keywords: Complex modulus, Rutting, Permanent Deformation, Hamburg Wheel tracking Test 
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INTRODUCTION 

Rutting as one of the major asphalt pavement structural distresses has long been investigated by 

researchers. This phenomenon is the permanent plastic strain due to repeated loads, rutting rate 

increases significantly due to overweight vehicles and traffic consistently moving below design 

speed. At warmer conditions, the asphalt mixtures tend to behave in a more viscous manner 

because of the softened binder which consequently results in creep and permanent deformations. 

There are different testing and analysis methods such as Hamburg wheel tracking test (HWTT), 

asphalt pavement analyzer (APA), flow number (FN), stress sweep rutting (SSR), Superpave shear 

tester (SST) etc. to evaluate the rut susceptibility of the asphalt mixtures. The majority of these 

tests need equipment specifically designed to evaluate only the rut performance and involve 

specimen fabrication and analysis methods which often time is relatively time consuming. Others 

such as SST, although provide fundamental mixture properties, are substantially complicated to 

conduct the test and analyze the result while there is no acceptable model associated with the 

results from this test to predict performance (Brown, 2001).   

One of the most widely accepted tests to determine the asphalt mixtures rutting and stripping 

susceptibility is the HWTT. The test is run in accordance to the AASHTO T-324 standard testing 

method in 52±2 cycles per minute at a temperature usually set in accordance with the PG high 

temperature. Based on the test track length (22.7 cm), number of loading cycles in time domain 

and the sinusoidal loading function of the wheel on the specimen, the applied loading frequency 

in the middle of the track length were the rut depth is measured can be calculated (Mohammad, 

2015). This frequency would be equal to 0.866 Hz. As the test is run in wet condition, the results 

not only indicate the rut susceptibility but are also used to determine the mixture stripping 

potential. The deformation versus loading cycles graph is generally divided into three 

distinguished parts. The initial part of the graph is related to the densification of the asphalt mixture 
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due to loading which usually happens after about 1000 cycles (Yildirim, 2006). The second portion 

of the curve with a constant creep slope can be used to evaluate the mixture rutting susceptibility. 

The third portion of the curve which can be distinguished through an inflection point and a steeper 

slope is related to mixture degradation due to stripping (Brown, 2001). Although different 

destructive testing methods are available to specifically determine the mixtures rutting 

susceptibility, the specimen fabrication and conditioning as well as testing different replicates 

might be time consuming. In addition, many of these tests, require expensive testing equipment 

which may not be available in many labs. 

It has been shown that rutting is directly correlated with the mixtures’ stiffness (Sivasubramaniam, 

2005), and as a result stiffness based measures can be used to evaluate the mixtures’ rutting 

susceptibility. There are different tests such as resilient modulus (Mr) and complex modulus (E* 

and phase angle) to determine the mixtures stiffness. Although resilient modulus has been shown 

to have some correlations with the rutting (Brown, 2001), it measures the recoverable strain of the 

mixture due to repeated loading whereas rutting is related to the mixtures plastic deformation 

(unrecoverable strain) which is a substantially different aspect of mixtures performance. In other 

words, it is possible that a mixture with a higher resilient modulus could have a higher plastic 

deformation compared to a mix with a lower Mr value. Also, resilient modulus measures the 

stiffness at only one temperature and frequency (25°C at 10Hz), however depending on the loading 

and climatic conditions, rutting can happen at different circumstances and not only in one specific 

situation.   

The complex modulus test evaluates the mixtures performance at multiple frequency and 

temperature combinations. Using the dynamic modulus master-curves, the mixtures’ stiffness can 

be measured at different temperatures and frequencies. Therefore, it can be used to estimate the 

mixtures rutting performance in different conditions. Despite the fact that rutting is a plastic 
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deformation with non-recoverable strains (Bazzaz, Mohammad, et al. 2018), the dynamic modulus 

as a linear viscoelastic property has been widely used in distress prediction models in many 

performance prediction tools such as Pavement ME because of its simplicity in conducing the test 

and analysis (Mohammad, 2006; El, 2013). Also, because of the correlation between rutting and 

stiffness, the dynamic modulus can be used as an additional preliminary rutting performance 

screening tool. The NCHRP project 19-9 introduces dynamic modulus as one of the three main 

tests to discriminate the mixtures rutting performance where the other two are flow time and 

repeated loading permanent performance tests (Witczak 1997). Therefore, a dynamic modulus 

based index parameter can facilitate the mixture performance ranking and reduce the extensive 

specimen fabrication and lab work. Many studies have been conducted to relate the dynamic 

modulus to any one of the specific rutting tests. Research conducted by Apeagyei tried to develop 

a mathematical model between the FN as function of dynamic modulus at 38°C and 10, 1, 0.1Hz 

plus the mixture gradation (Apeagyei, 2011). Dynamic modulus at 38°C and 54°C and 5Hz has 

also been examined to investigate the relationship between the modulus and field rutting (Witczak, 

2002), but no consistent results with respect to different mix types were observed with 

consideration of only │E*│ at this specific temperature and frequency. Nemati (2017) used the 

combination of │E*│ at 37.8° and 1.59Hz to investigate the relationship between this parameter 

and resilient modulus for typically used mixtures in New Hampshire. This combination revealed 

promising correlation for majority of mixtures in the study (Nemati, 2017). However, since rutting 

is the measure of plastic deformation, it is important to consider the mixture’s viscous properties 

along with the stiffness through incorporating the phase angle. The prevailing pre-peak behavior 

of the phase angle master-curve towards the lower frequencies is generally considered to be 

controlled with the aggregate (Figure 1). Theoretically, in this frequency range, the binder-
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aggregate interaction phase weakens and as the mixture overall load bearing capacity decreases, 

rutting happens.  

A comprehensive study was conducted by Bhasin (2003) to evaluate the rut susceptibility of some 

of the commonly used asphalt mixtures in southern United States. Mixtures were tested using the 

APA, flow test and dynamic complex modulus. The mixtures were ranked and compared to APA 

as the baseline (Bhasin, 2003). The results indicated that │E*│/sin ϕ at 1Hz was able to rank the 

mixtures similar to APA whereas the same criteria at 10 Hz revealed poor correlation to APA 

results. In general there has not been much success in implementing the dynamic modulus at single 

temperature and frequency to relate to the rutting performance as mixtures with different gradation 

and characteristics behave differently in a predefined loading conditions (Birgisson, 2004). 

Another problem with considering only one point on the master-curve is that there is a possibility 

that the master-curves of different mixtures would intersect at that specific point or may hold close 

stiffness and phase angle values which can make it difficult to distinguish between different 

mixtures. Therefore, there is need to investigate the complex modulus master-curves at more than 

one single point to evaluate the effect of temperature and frequency on the rutting mechanism.  

The main objective of this study is to explore the possibility of development of a rutting index 

parameter using the complex modulus master-curves (dynamic modulus and phase angle). Such 

index parameter can help reducing the required lab work during the mixture design and evaluation 

procedure by narrowing down the number of mixtures that should be tested through 

aforementioned destructive testing methods. The approach in this study uses two points on the 

master-curves to develop various index parameters. The first point (marked by subscript “A” in 

this paper) is associated with the reduced frequency on the master-curves at which the peak phase 

angle happens. This point is selected due to it indicative of the highest potential for non-

recoverable deformation within LVE response range of the asphalt mixtures.  The selection of the 
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second point (marked by subscript “B” in this paper) is directly correlated to the HWTT testing 

temperature (regionally assigned temperature) and loading frequency (52 cycles per minute equal 

to 0.866 Hz) and its projected reduced frequency on the master-curves. The choice for this point 

is driven by need to capture asphalt mixture behavior in a low stiffness range, where greater 

compressive strains will be experienced by asphalt under traffic loading. As HWTT has shown to 

distinguish asphalt mixtures’ rutting performance and correlate well to field performance, the 

loading frequency associated with that test was chosen. Please note that the frequencies used in 

this research are shifted as per the time-temperature superposition principle. Once the points are 

assigned, 5 different parameters are investigated to determine their correlations with the rutting. 

Figure 1 and Table 1 indicate and describe the selected points on the master-curves used to develop 

the index parameters. 

 

Fig.1. Typical dynamic modulus and phase angle master-curves for asphalt mixtures. 

Selected points on the master-curves to develop the rutting index parameters 
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Table 1. Description of the selected points on the master-curves 

Complex 

Modulus 

Master-Curve 

Point Description 

Phase Angle 

(𝜹) 

 

δA Peak Phase Angle (𝛿) 

δB (𝜹) corresponding to HWTT testing condition (45°C at 0.866Hz) 

δC 
Estimated average phase angle between points A and B; δC= [δA+ 

δB]/2 

Dynamic 

Modulus 

│E*│ 

│E*A│ │E*│corresponding to peak phase angle 

│E*B│ 
│E*│ corresponding to the HWTT testing condition (45°C at 

0.866Hz) 

│E*c│ 
Estimated average dynamic modulus between points A and B; 

│E*c│ =  [│E*A│+│E*B│]/2 

(𝜹) 𝐚𝐧𝐝│E*│ 

 

fA Logarithm of frequency corresponding to Peak Phase Angle 

fB 
Logarithm of frequency corresponding to HWTT testing 

condition (45°C at 0.866Hz) 

 

In order to develop, verify and validate a complex modulus based rutting index parameter, three 

different sets of mixtures are evaluated. The first set is combined of 7 mixtures for which the 

HWTT results are available and 5 different complex modulus based indices will be investigated to 

determine the best statistically correlating index parameter with the rut depth measurements. The 

second set of the mixtures includes 6 hot mixed asphalt mixtures for which the field rut 

measurements and available and the index parameters will able evaluated in terms of capability of 

mixture ranking as well as their statistical correlations with the field performance. The third set is 

combined of 9 mixtures with same gradation but varying air void and binder content. This set is 

used to verify the capability of the indices in determining the expected rutting performance of a 

mixture with respect to the mixture design properties. The material and the results of analysis will 

be discussed in the next sections of the paper. 

RESEARCH APPROACH AND MATERIAL 

As a preliminary step to explore the capability of master-curves in determining the mixtures rut 

susceptibility, a set of 7 different mixtures with diverse rheological properties were selected. These 
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mixtures have been evaluated through the HWTT at 45°C as per the AASHTO T324 test 

specifications. All testing for these mixtures was conducted in submerged conditions. The rut depth 

and creep slope are primarily used to evaluate the mixture rutting susceptibility. In this study the 

rutting depth at 7000th pass in the test was selected to compare the mixtures with respect to rutting 

performance. The creep slope was not used for comparison purposes, since some of these mixtures 

start to reveal stripping related behavior after about 7000 test cycles. The design properties of this 

set of mixtures is summarized in Table 2. It should be mentioned that The MEP, MEM-1, MEW 

and VTG-1 are polymer modified mixtures. Also, an antistripping agent has been used in VTP-2 

mixture production. 

Table 2. Properties of the first set of mixtures used to develop the rutting index parameters 

 

The results from HWTT test is depicted in Fig. The plots and the rut depths are averaged measured 

values from two specimens in the HWTT test. The test results confirm the reasonability of selecting 

the 7000th pass of the HWTT test as the comparison reference point, where all the slopes remain 

steady before the stripping initiates. Also this point on the curve is significantly away from the 

post-compaction consolidation point which is happening after about 1000 cycles. On the other 

hand, this point is selected as such that mixtures like MEP and VTP-2 could be evaluated in terms 

Mixture  
Binder 

Grade 

NMAS 

(mm) 
RAP% AC (%) (VMA, %) (VFA, %) 

%Passing 

#200 (%) 

 (Ndes 

gyrations) 

MEP 64-28 12.5 10 5.9 
Not 

Available 

Not 

Available 
5.1 50 

MEM-1 64-28 12.5 20 5.6 
Not 

Available 

Not 

Available 
5.0 50 

MEW 64-28 12.5 20 5.8 
Not 

Available 

Not 

Available 
4.5 50 

VTP-1 58-28 9.5 20 6.0 16.5 76 4.8 50 

VTP-2 58-28 9.5 20 6.0 16.5 76 4.8 50 

VTG-1 70-28 12.5 15 4.9 15.5 74 4.4 80 

CTG-1 64-22 12.5 0 5.0 15.5 72 2.5 50 
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of rutting performance only and the response is not overwhelmed by moisture induced stripping 

damage.  

 
Fig 2. HWTT test results for the first set of study mixtures 

Complex modulus master-curves 

Complex modulus specimens were cored, cut and tested with respect to AASHTO T342 standard 

procedure in three temperatures 4.4°C, 21.1°C and 37.8°C and 6 loading frequencies as 0.1Hz, 

0.5Hz, 1Hz, 5Hz, 10Hz and 25Hz. Then using the time temperature superposition principle (TTSP) 

master-curves were constructed at a reference temperature of 21.1°C.  

In order to analyze the master-curves to develop the index parameters, Equations 1 and 2 were 

used to fit the dynamic modulus and phase angle graphs respectively (Nemati, 2018). 

𝑳𝒐𝒈 (𝑬∗) = 𝒄 +
[𝒅−𝒄]

[𝟏+𝒆[−𝒂[𝑳𝒐𝒈(𝒇)−𝒃]]]
                         Equation (6) 

Where:  

𝑓 = Load Frequency 

𝑎 = Growth Rate 

𝑏 = Inflection Point 
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𝑐 = Lower Asymptote 

𝑑 = Upper Asymptote 

𝜹 =  
[𝒂×𝒃𝟐]

[[(𝑳𝒐𝒈(𝒇))−𝒄]
𝟐

+𝒃𝟐]
               Equation (7)  

Where: 

𝑓 = Load Frequency 

𝑎 = Peak Value 

𝑏 = Growth Rate 

𝑐 = Critical Point 

The fitted dynamic modulus and phase angle master-curves are depicted in Figure 3 and Figure 4 

respectively. As discussed earlier the aim of this study is to implement the pre-peak behavior of 

phase angle master-curve (Figure 1) as a starting point for developing a rutting index parameter. 

The behavior of this portion of the phase angle master-curve is controlled with the aggregate 

stiffness and binder flow which is reflected as a drop in phase angle master-curve. The rate, 

magnitude and coordination of the phase angle and stiffness drop on the master-curves is deemed 

to be unique for different mixtures as mixtures have different rheological properties. The peak 

point on the phase angle is considered as the maximum extent of the viscous behavior of a mixture 

and depending on the aggregate size and gradation, binder type and content as well as other mixture 

properties the coordination of this peak point can change significantly. It is hypothesized that after 

this peak point towards the lower frequencies, the combination of the low loading frequency and 

high temperature will cause the binder to flow into the mixture air voids and thinner asphalt film 

will be left around the aggregate resulting in a more elastic response. This phenomena causes the 

aggregate to be the prevailing load bearing element in the mixture and because of that the phase 

angle starts to drop (Zhao 2003). For the same aggregate gradation and different binder type, the 
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faster the binder flows (softer binder) the faster the phase angle will drop and probably the higher 

amount of rutting will be observed.   

 
Fig. 3. Fitted dynamic modulus master-curves of the first set of mixtures 

 
Fig. 4. Fitted phase angle master-curves of the first set of mixtures 

In order to establish any type of correlation between rutting and the observed performance, it is 

necessary to define and select the critical rutting related points on the master-curves and resume 

the analysis on basis of them. As mentioned earlier the peak point on the phase angle master-curve 

can be physically interpreted and correlated to the mixture rut susceptibility but this point alone 
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may not be enough to explain the mixture performance. For this reason, a second point on the pre-

peak side of the phase angle master-curve should be selected for evaluation purposes. In this study, 

this second point on the master-curve is selected based on the HWTT loading and temperature 

conditions. 

The HWTT test temperature is usually selected either with respect to binder high temperature 

performance grade (PGHT) or the regional climatic conditions needs. In New England area, this 

temperature is usually set at 45°C. Also, the frequency of the rolling wheel in HWTT is 52 passes 

per minute which is equal to 0.866 Hz. Thus, the second point on the master-curves is selected as 

such to be equivalent to 45°C at 0.866 Hz. The corresponding reduced frequency on the master-

curves is calculated through using the appropriate shift factors for this temperature and frequency 

combination. The investigated indices and their calculation are described in Table 3. The 

subsequent text discusses each index individually.  

Table 3. Proposed complex modulus based index parameters to evaluate the rutting 

performance 

Index Parameter Calculation Method 

I [δA-δB] /│fA - fB│ 

II [│E*A│- │E*B│] /│fA - fB │ 

III [│E*A│- │E*B│] /│fA - fB │2 

IV │E*c│/ [δc×│fA - fB │2] 

V [│E*A│- │E*B│] / [[δA-δB]×│fA - fB │2] 

 

The first index (I) investigates the rheological properties of the mixtures by determining the rate 

of drop in phase angle with respect to changes in frequency without considering the effect of 

stiffness in the analysis.  The second index (II), evaluates the dynamic modulus drop rate with 

respect to changes in frequency to investigate the effect of stiffness. The third index (III) is similar 

to the second index (II) in the context of using the rate of changes in dynamic modulus over the 
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loading frequency. The main difference here is that Index (III) uses the squared effect of logarithm 

of frequency to increase the emphasis on the effect of loading rate on the rutting. Further analysis 

confirmed that the squared logarithm of frequency can improve the correlation between the rutting 

and the indices. Although it might seem that indices (II) and (III) do not consider the effect of 

phase angle in the parameters, the selection of the reduced loading frequencies in these parameters 

is a direct function of where the peak phase angle happens. Indices IV and V try to incorporate the 

effect of modulus, phase angle and frequency at the same time. Generally, from the Superpave 

binder PG grading system, it is well known that shear modulus divided by the phase angle (|G*|/ 

sin δ) has been a good indicator of binder rutting properties and indices IV and V are developed 

based on this logic. It should be mentioned that in order to develop a reliable index parameter, 

many different indices were investigated, however on basis of the observations and strength of 

correlations between the HWTT results and indices, only five were selected for discussion in the 

paper.   

RESULTS AND DISCUSSION 

Evaluation Of The Rutting Indices Through HWTT Data 

The calculated values and the ranking from each of individual introduced rutting index parameters 

are shown in Table 4. With respect to how the indices have been mathematically written and 

physically described, a lower calculated value for Index (I) is more desirable indicating less 

decrease in phase angle due to loading/temperature whereas for indices (II), (III), (IV) and (V), a 

larger calculated value indicates a better rut resistance mixture.  

Mixture Ranking 

As it can be seen in Table 4, Index (I) is not capable of determining the mixtures performance 

because of merely focusing on the phase angle drop rate. Although Index (II) is showing some 

success in predicting the ranking of 3 mixtures, in general it over/underestimates the mixtures 
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rutting performance. The ranking order indicates the high capability of Index (III) in terms of its 

determining the mixtures rutting performance order. With regards to this index, the only difference 

is between the order of VTG1 and CTG1 mixtures. With respect to HWTT results, the difference 

between the measured rut for these two mixtures is less than 0.13mm or 3.5% which can be 

reasonably considered as negligible. The usefulness of Index (III) is clearer when considering 

mixtures like MEM1 and MEW. The two mixtures have similar properties in terms of binder type, 

RAP percentage, aggregate size and binder content. Considering these properties one may expect 

very similar rutting performance for the two mixtures while one is significantly more rut-resistant 

than the other. Similar to HWTT results, Index (III) has been able to well predict this difference. 

Also considering the dynamic modulus master-curves for VTP-1 and MEP, the latter has a 

relatively higher stiffness in the lower end of the master-curve and a single point type index would 

indicate it to have a higher rutting resistance. However, the HWTT results show MEP to be a poor 

performer as compared to VTP-1 and this is correctly captured by Index (III). Indices (IV) and (V) 

resulted in same type of ranking compared to each other, but with respect to HWTT ranking, the 

results are not promising.   

In summary, it seems that Index (III) has a better capability in ranking the mixtures with respect 

to HWTT. However, it is necessary to evaluate these parameters through the field rutting 

performance. The next subsection will investigate the introduced parameters through ranking a set 

of 6 other mixtures for which the field rutting data is available after 5 years of in service. 
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Table 4. Calculated value and ranking of individual rutting index parameters for the first 

set of mixtures 

Mixture 

 

HWTT 

Results 
Index and Rank 

HWTT 

Rut 

Depth 

(mm) 

Rank I Rank II Rank III Rank IV Rank V Rank 

MEP 5.5 7 4.1 3 387.3 6 173.5 7 5.6 5 20.6 5 

MEM-1 3.8 3 2.9 1 353.5 5 302.0 3 11.9 1 80.7 1 

MEW 5.5 6 4.0 2 314.1 7 194.3 6 5.9 4 30.0 4 

VTP-1 4.4 4 6.3 6 396.6 4 207.6 4 5.0 6 17.4 6 

VTP-2 4.8 5 6.5 7 417.0 3 205.5 5 4.7 7 15.6 7 

VTG-1 3.6 1 5.0 5 590.9 1 339.2 2 11.3 3 38.8 3 

CTG-1 3.7 2 4.6 4 505.7 2 353.4 1 11.7 2 53.7 2 

 

Evaluation Of The Rutting Indices Through Field Rutting Data 

As mentioned in the previous subsection, the introduced rutting index parameters will be further 

evaluated through comparing the index parameter based ranking to that of the field performance. 

The 6 investigated mixtures in this subsection are placed on I-93 as part of the North-East High 

RAP Pooled Fund Study. The field performance of this set of mixtures has been monitored yearly 

through construction of six test sections in 2011 on the southbound lanes on I-93 between exits 30 

and 32 in Woodstock and Lincoln, New Hampshire. It is worth mentioning that the distresses have 

been measured through an automated pavement distress data collection van by New Hampshire 

DOT. Since the pavement structure, traffic and climatic condition is the same for these mixtures, 

it would be possible to compare and rank the mixtures independent from other variables that can 

affect the pavement overall response and performance. The mix design properties for this second 

set of mixtures are summarized in Table 5.  
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Table 5. Mixture design and properties of the second set of mixtures to verify the index 

parameters 

Mixture 
Binder 

Grade 

NMAS 

(mm) 

RAP 

(%) 

AC 

(%) 

VMA 

(%) 

VFA 

(%) 

Field 

Air 

Void 

(%) 

Pavement 

Rut Depth 

(mm) 

Virgin-58-28 58-28 12.5 0 5.9 16.8 74 5.4 4.15 

15%RAP-58-28 58-28 12.5 15 5.6 16.9 74.2 5.3 5.24 

25%RAP-58-28 58-28 12.5 25 5.8 16.7 75.3 5.9 3.96 

25%RAP-52-34 52-34 12.5 25 6.0 16.5 79 5.3 3.73 

30%RAP-52-34 52-34 12.5 30 6.0 16.4 78.1 6.2 3.84 

40%RAP-52-34 42-34 12.5 40 4.9 17 75.2 4.5 2.85 

 

As it can be seen from the table, the 15%RAP-58-28 mixture has the highest rut depth whereas the 

40%-52-34 has the lowest. Unlike these two, the rest of the mixtures although possess different 

values of rut depth, their magnitude is generally very close to each other and one can reasonably 

consider them as similar rut performing mixtures at least in the first five years after construction. 

It should be noted that there is inconsistency among the mixtures’ measured field air void which 

might seem to affect the rutting ranking and performance. However, the air voids of the first four 

mixtures in the table are close to each other and within one standard deviation of the mean for all 

the mixtures.  The air void level of the last two mixtures in the table (30%RAP-52-34 and 

40%RAP-52-34) are only marginally away from one standard deviation from the mean.  

The other noteworthy point in the table is the higher rut depth of the mixture with stiffer binder 

PG grade with the same RAP content in the case of 25%-58-28 and 25%-52-34 mixtures. A 

possible reason for this observation is related to the binder properties and the binder’s ΔTcr 

parameter.  A comprehensive study has been conducted on different aspects of properties of these 

mixtures and further discussion about these properties is beyond the scope of this paper (Daniel et 

al. 2018). The dynamic modulus and phase angle master-curves were constructed and fitted 
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through the same procedure explained in section 2.1. The fitted dynamic modulus and phase angle 

master-curves are depicted in Figure 5 and Figure 6 respectively. 

 

Fig. 5. Fitted │E*│master-curves of the second set of mixtures 

 

Fig. 6. Fitted phase angle master-curves of the second set of mixtures 
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Mixture Ranking 

The five different indices were calculated for the 6 mixtures in order to make comparisons to the 

field distress measurements. The calculated indices and the rankings have been depicted in Table 

6. As it can be seen from the table, except for Index (II) all other indices have been able to capture 

the worst (15%-58-28) rut resistant mixture. Based on the results, Index (I) seems not be a good 

enough tool to indicate the rutting susceptibility. Also, Index (II) has not been able to predict the 

ranking of majority of the mixtures. With respect to Index (III), the ranking comparison indicates 

that this index has identical ranking to the field conditions. Also, a comparison between the 

calculated index parameters and the rut depths reveals that Index (III) is able to better distinguish 

the relative difference between the mixtures in addition to ranking them. Index (IV) indicates to 

be incapable of ranking the mixtures which was also seen previously for the first set of the study 

mixtures dataset. On the other hand, Index (V) is showing promising results in terms of 

discriminating the mixtures rutting ranking with respect to field data.  

Table 6. Values of Rutting Index Parameters for High RAP Pooled Fund Study Mixtures 

Mixture 

 

Field 

Results 
Index and Rank 

Field 

Rut 

Depth 

(mm) 

Rank I Rank II Rank III Rank IV Rank V Rank 

Virgin-

58-28 
4.1 5 3.1 2 351.8 6 355.6 5 12.5 4 117.3 4 

15%- 

58-28 
5.2 6 6.0 6 505.4 1 267.1 6 6.7 6 23.3 6 

25%- 

58-28 
4.0 4 3.1 4 358.6 5 397.1 4 17.5 2 141.4 5 

25%- 

52-34 
3.7 2 2.9 1 498.6 2 478.8 2 14.0 3 156.1 2 

30%- 

52-34 
3.8 3 3.2 5 469.3 4 425.4 3 11.4 5 117.7 3 

40%- 

52-34 
2.9 1 3.1 3 497.6 3 496.3 1 20.7 1 160.9 1 
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Evaluation Of The Index Parameters Through Mixture Design Properties Variations 

 

As one of the main goals for exploration of a complex modulus based rutting performance index 

parameter in this study is to estimate the mixtures performance and screen the mixtures based on 

the complex modulus results ahead of conducting the specific rutting test such as the HWTT, it is 

necessary to examine the performance index parameters through a sensitivity analysis with respect 

to mixture design properties.  In order to accomplish this goal a third set of mixtures with the same 

gradation and varying design air void and asphalt content were selected to determine how each of 

the index parameter can capture these variations in the mix design and consequently the rutting 

performance. The mixtures were designed and compacted at three different levels of air void and 

binder content (resulting in 9 different combinations). The mixture design and properties are 

summarized in Table 7. The complex modulus specimens were fabricated and tested in accordance 

to AASHTO TP342 test method and the master-curves were constructed and fitted at 21.1°C. The 

dynamic modulus and phase angle master-curve plots are depicted in Figure 7 and Figure 8 

respectively. It can be seen from the plots that for each set of binder content the dynamic modulus 

master-curves become relatively softer (indicate lower modulus values) with increasing air void 

but no specific trend is observed for phase angle master-curves which makes the overall 

performance prediction challenging through comparing only master-curves. 
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Table 7. Properties of the third set of mixtures used to examine the index parameters based 

on altering the mix design properties 

Mixture Binder Grade 
NMAS 

(mm) 

RAP 

(%) 

AC 

(%) 

AV  

(%) 

5.9AC-4AV 64-28 9.5 0 5.9 4 

5.9AC-7AV 64-28 9.5 0 5.9 7 

5.9AC-9AV 64-28 9.5 0 5.9 9 

6.3AC-4AV 64-28 9.5 0 6.3 4 

6.3AC-7AV 64-28 9.5 0 6.3 7 

6.3AC-9AV 64-28 9.5 0 6.3 9 

6.8AC-4AV 64-28 9.5 0 6.8 4 

6.8AC-7AV 64-28 9.5 0 6.8 7 

6.8AC-9AV 64-28 9.5 0 6.8 9 

 

 

Fig.7. Fitted │E*│master-curves of the third set of mixtures 
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Fig.8. Fitted phase angle master-curves of the third set of mixtures 

 Mixture Ranking 

In order to evaluate the capability of the index parameters to estimate the mixtures rutting 

performance, the ranking was conducted in three different categories for each variable separately. 

Based on the general expectations from volumetric point of view, a mix with lower binder content 

would be more rut resistant compared to one with higher binder content. In general, mixes with 

excessively high air void levels have potential for rutting due to lower stiffness and mixtures with 

a low air voids (typically below 4%) also have high propensity for rutting due to lack of sufficient 

air voids to allow expansion of binder during high temperatures.  However, in the data-set used in 

this paper, the air void levels are within 4 to 9% range and not sufficiently varied to draw 

conclusions regarding air void associated rutting performance prediction without performing lab 

test, such as HWTT.  Nonetheless to make full comparisons for effects of both air-voids and asphalt 

binder contents, the mixtures are ranked in two ways; first, a constant air void level and varying 

binder content (Table 8) and second, a constant binder content and varying air void level (Table 

9)  
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Table 8. Ranking is based on the varying binder content at constant air void level 

 

Table 9. Ranking is based on the varying air void level at constant binder content 

 

Mixture 

Volumetric 

based 

Expected 

Rank 

Index and Rank 

I Rank II Rank III Rank IV Rank V Rank 

5.9AC-

4AV 
1 3.1 1 366.5 3 239.5 1 8.1 1 41.2 1 

6.3AC-

4AV 
2 4.0 2 385.7 2 229.5 2 7.0 2 33.7 2 

6.8AC-

4AV 
3 4.8 3 409.1 1 224.7 3 6.4 3 25.7 3 

5.9AC-

7AV 
1 3.4 3 379.6 1 281.7 1 9.8 1 61.2 1 

6.3AC-

7AV 
2 3.6 2 359.3 3 212.4 2 6.3 2 34.9 2 

6.8AC-

7AV 
3 4.4 1 360.0 2 197.4 3 5.7 3 24.4 3 

5.9AC-

9AV 
1 3.9 2 336.5 1 218.1 1 6.9 2 36.2 2 

6.3AC-

9AV 
2 2.8 1 304.5 2 217.7 2 7.5 1 55.4 1 

6.8AC-

9AV 
3 5.1 3 266.9 3 117.0 3 3.1 3 10.0 3 

Mixture 

Volumetric 

based 

Expected 

Rank 

Index and Rank 

I Rank II Rank III Rank IV Rank V Rank 

5.9AC-

4AV 
1 3.8 2 366.5 2 239.5 2 8.1 2 41.2 2 

5.9AC-

7AV 
2 3.4 1 379.6 1 281.7 1 9.8 1 61.2 1 

5.9AC-

9AV 
3 3.9 3 336.5 3 218.1 3 6.9 3 36.2 3 

6.3AC-

4AV 
1 4.0 3 385.7 1 229.5 1 7.0 2 33.7 3 

6.3AC-

7AV 
2 3.6 2 359.3 2 212.4 3 6.3 3 34.9 2 

6.3AC-

9AV 
3 2.8 1 304.5 3 217.7 2 7.5 1 55.4 1 

6.8AC-

4AV 
1 4.8 2 409.1 1 224.7 1 6.4 1 25.7 1 

6.8AC-

7AV 
2 4.4 1 360.0 2 197.4 2 5.7 2 24.4 2 

6.8AC-

9AV 
3 5.1 3 266.9 3 117.0 3 3.1 3 10.0 3 
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It can be observed from the tables that with respect to variations in the binder content (Table 8) 

while the rankings from parameters (I) and (II) are not promising, Index (III) has been able to fully 

predict the mixtures ranking and indices (IV) and (V) show partial success in ranking the mixtures. 

With respect to varying air void (Table 9) Index (II) followed by Index (III) best rank the mixtures. 

In general, and considering all three sets of investigated mixtures, Index (III) shows to be a reliable 

tool in ranking the mixtures rutting resistant capability. However, in many instances, it is not only 

the ranking that is important, but also the correlation between the index parameter an the test/field 

measurements is of high interest in order to determine the relative difference in the performance 

to design and select the most cost effective mixture. The correlation between the index parameters 

and the test/field measurements is discussed in the next subsection. 

Correlation Of The Index Parameters With The HWTT/Field Rut Measurements 

As it was seen in the previous section, some of the indices were able to rank the mixtures in a 

similar way to the ranking from the volumetric based expectations. However, the ability of the 

indices to differentiate the mixtures performance would be different. Therefore, it is necessary to 

further investigate the correlation between the index values with the actual measurements from 

field and the HWTT test results. Figure 9 reveals the correlation and goodness of fit in terms of 

(R2) between different index parameters and the measured rut depths for the first and second set 

of the study mixtures. Using the standard least squared method to determine the line of best fit the 

R2 value was determined for both sets of data for individual index parameters. It can be seen that 

fairly good correlation exists between the indices and the rutting measurements except for Index 

(I) where there is no correlation between the index and the HWTT measurements. Amongst all the 

indices, Index (III) indicates a clearly strong linear correlation with both the field and HWTT rut 

depth measurements. Considering the ranking results from the previous sections, this index can 

reasonably determine the mixtures relative rutting performance difference in addition to ranking 
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them. Also, with respect to Index (III), for most of the mixtures, the ratio of the two measured rut 

values and their calculated index parameter counterpart is closely comparable indicating the 

capability of this parameter in determining the relative difference in performance between 

mixtures. 

 

Fig.9. Correlation between the index parameters and the measured rut depths 
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SUMMARY, CONCLUSION AND FUTURE WORK 

Dynamic modulus │E*│as a measure of stiffness is generally considered as an indicator for 

asphalt mixtures rutting resistance where a mixture with higher modulus value frequency is 

generally considered to be less rut susceptible. However, this hypothesis ignores the viscoelastic 

behavior of the asphalt mixtures and the phase angle as the viscous part of the response. This 

research introduces and investigates 5 different complex modulus based index parameters to 

evaluate the asphalt mixtures rutting susceptibility. These parameters implement the full linear 

viscoelastic properties of the asphalt mixtures (dynamic modulus and phase angle) at two specific 

points on the master–curves. The first point is associated to the frequency at which the peak phase 

angle takes place. The second point is selected based on the Hamburg Wheel Tracking Test 

(HWTT) test loading frequency and temperature (52 passes/min equivalent to 0.866Hz at 45°C) 

and its equivalent reduced frequency on the master-curves.  

The investigations were conducted on three different sets of plant produced lab compacted 

mixtures (total of 22 mixtures). The first set includes 7 mixtures for which the HWTT test results 

are available to develop the parameters. The second set comprises from 6 mixtures for which the 

field rut depths in the 5th year after construction are used for verification of the introduced rutting 

index parameters. The third set of the mixtures is used to evaluate the index parameters with 

respect to volumetric variations in the mixture design where no rut measurements would be 

available. In addition to mixture ranking, the strength of correlation between the rut depths and the 

index parameters was evaluated through statistical analysis and the goodness of fit (R2).  

Amongst the 5 introduced parameters, Index (III) revealed high capability in mixture ranking while 

maintaining high correlation with both the HWTT and field measured rut. The results indicated 
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that this index can be used as a preliminary tool in evaluating and screening the mixtures rutting 

performance.  

In order to implement the index parameters in this study, it is important to consider the regional 

mixture design properties (especially in southern United States) in selecting the HWTT related 

point on the master-curves. For stiffer mixtures, there is a possibility for the second critical point 

(fb) to be projected on the post-peak side of the phase angle master-curve. In this situation, it is 

recommended to use the high binder PG grade temperature as opposed to the conventional HWTT 

test temperature to determine the reduced frequency on the master-curve.  

As a future step in this study, more field data should be used to determine the rutting threshold 

values for different types of pavement structures and traffic levels so that the parameters can be 

utilized in development of performance space diagrams as part of balanced mixed design approach 

to optimize the binder content in the mixture through a mechanistic based mixtures design.  



www.manaraa.com

 

E-27 
 

REFERENCES 

 

AASHTO, T. "Standard method of test for Hamburg wheel-track testing of compacted hot mix 

asphalt (HMA)." (2011). 

 

Apeagyei, Alex K. "Rutting as a function of dynamic modulus and gradation." Journal of 

Materials in Civil Engineering 23.9 (2011): 1302-1310. 

Bazzaz, Mohammad, et al. "A straightforward procedure to characterize nonlinear viscoelastic 

response of asphalt concrete at high temperatures." Transportation Research Record (2018): 

0361198118782033. 

Birgisson, Bjorn, et al. "The use of complex modulus to characterize the performance of asphalt 

mixtures and pavements in Florida." Final report (2004): 4910-4501. 

Bhasin, Amit, Joe W. Button, and Arif Chowdhury. Evaluation of simple performance tests on 

HMA mixtures from the south central United States. USA: Texas Transportation Institute, Texas 

A & M University System, 2003. 

Brown, E. Ray, Prithvi S. Kandhal, and Jingna Zhang. "Performance testing for hot mix 

asphalt." NCAT report 1.05 (2001). 

Daniel, Jo Sias, et al. "Comparison of asphalt mixture specimen fabrication methods and binder 

tests for cracking evaluation of field mixtures." Road Materials and Pavement Design (2018): 1-

17. 

EI, Nur Hossain, and Dharamveer Singh. "Dynamic modulus-based field rut prediction model 

from an instrumented pavement section." Procedia-Social and Behavioral Sciences104 (2013): 

129-138. 

Mohammad, Louay N., et al. "Permanent Deformation Analysis of Hot-Mix Asphalt Mixtures with 

Simple Performance Tests and 2002 Mechanistic–Empirical Pavement Design 

Software." Transportation Research Record 1970.1 (2006): 133-142. 

Mohammad, Louay N., et al. Hamburg Wheel-Track Test Equipment Requirements and 

Improvements to AASHTO T 324. No. NCHRP Project 20-07/Task 361. 2015. 

Nemati, Rasool, Eshan V. Dave and Jo S. Daniel, “Comparative Evaluation of New Hampshire 

Mixture Based on Lab performance Tests” Proceedings of International Society of Asphalt 

Pavements, 2018. 

Nemati, Rasool, and Eshan V. Dave. "Nominal property based predictive models for asphalt 

mixture complex modulus (dynamic modulus and phase angle)." Construction and Building 

Materials 158 (2018): 308-319. 



www.manaraa.com

 

E-28 
 

Sivasubramaniam, Sivaranjan, and John E. Haddock. "Validation of Superpave mixture design and 

analysis procedures using the NCAT test track." Joint Transportation Research Program (2006): 

252. 

Witczak, M. W., H. L. Von Quintus, and C. W. Schwartz. "Superpave support and performance 

models management: Evaluation of the SHRP performance models system." Eighth International 

Conference on Asphalt Pavements”. Federal Highway Administration. No. Volume III. 1997. 

Yildirim, Yetkin, and K. Stokoe. "Analysis of Hamburg wheel tracking device results in relation 

to field performance." Analysis (2006). 

Witczak, Matthew W. Simple performance test for superpave mix design. Vol. 465. Transportation 

Research Board, 2002. 

Zhao, Yanqing, and Y. Kim. "Time-temperature superposition for asphalt mixtures with growing 

damage and permanent deformation in compression." Transportation Research Record: Journal 

of the Transportation Research Board 1832 (2003): 161-17



www.manaraa.com

 

E 
 

Appendix: Paper 5 (Chapter 8)  
 

Title: Development of a Rate-Dependent Cumulative Work and Instantaneous Power based 

Asphalt Cracking Performance Index 

Journal: Road Materials and Pavement Design 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

 

E-1 
 

Development of a Rate-Dependent Cumulative Work and 

Instantaneous Power based Asphalt Cracking Performance Index  

1Rasool Nemati, 2Katie Haslett, 3Eshan V. Dave, 4Jo E. Sias 

ABSTRACT 

Use of the semi-circular bending (SCB) test has gained popularity for evaluating cracking 

performance of asphalt mixtures. An Illinois Flexibility Index Test (I-FIT) variant of SCB has 

shown the ability to distinguish mixtures through use of the flexibility index (FI) parameter. While 

this index has been able to rank the mixtures with respect to performance, a high coefficient of 

variation (COV) among the replicates has often been observed. Furthermore, parameters such as 

total fracture energy and FI do not incorporate rate-dependency of fracture processes which are 

very important for viscoelastic materials such as asphalt mixtures at low and intermediate 

temperatures. In light of these observations, a rate dependent cracking index (RDCI) is proposed 

that utilizes cumulative fracture work potential and instantaneous power calculated from the I-FIT 

test to assess impulse of the mixture. Thus, in spirit, this parameter captures the fracture energy 

and crack velocity of the material; however, these are calculated in a rate-dependent manner. A 

total of 18 surface course mixtures were analysed using the RDCI and resulted in an average 

overall reduction of 10.6% in COV as compared to FI while maintaining similar ranking of 

mixtures. In general, RDCI was able to better discriminate the 18 mixtures as compared to FI. 
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Evaluation of five mixtures at three aging levels showed robustness of RDCI in capturing effects 

of aging on fracture behaviour of asphalt mixtures.  

Keywords: Semi-Circular Bend (SCB), Cracking, Flexibility Index, Cumulative Energy, Instantaneous 

Power 

INTRODUCTION 

Cracking is one of the major structural distresses in asphalt mixtures and has been widely 

investigated by researchers. Based on different mechanistic theories, numerous laboratory testing 

methods have been proposed to characterize the cracking performance of asphalt mixtures. 

Fracture mechanics has extensively informed development of laboratory tests and as they relate to 

the formation and growth of cracks with respect to material’s microstructure, loading rate and 

environmental circumstances. The application of fracture mechanics in characterizing the cracking 

performance of asphalt mixtures has been documented as early as the 1970s. Using a simple beam 

test under cyclic loading, a study by Majidzadeh et al. aimed to relate the stress intensity factor to 

the crack growth rate with respect to Paris’ law for asphalt mixtures’ fatigue performance 

(Majidzadeh, Kauffmann, & Ramsamooj, 1971; Paris & Sih, 1965). 

With respect to the fracture mechanics for heterogeneous composites such as asphalt mixtures, 

materials are assumed have a uniform distribution of pre-existing flaws. In order to conduct a 

laboratory test with stable crack growth and to hone in on the energy needed to propagate that 

crack, a specimen with a pre-existing crack or notch is needed. Using these concepts, Wagoner et 

al. explored the use of a single-edge notched beam (SENB) test to quantify the fracture properties 

of asphalt mixtures under repetitive loading (Wagoner, Buttlar, & Paulino, 2005). The geometry 

of the SENB test is challenging in terms of obtaining field samples from existing pavements, so 

alternative testing methods such as disk-shaped compact tension (DCT) and semi-circular bend 

(SCB) tests have been proposed (Molenaar, Scarpas, Liu, & Erkens, 2002; Molenaar, J. & 
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Molenaar, M. 2000; Wagoner, Buttlar, Paulino, & Blankenship, 2005). Both of these geometries 

can be prepared using cored specimens from pavements or from cylindrical gyratory samples 

following the standard Superpave mix design and compaction approaches. While the DCT test is 

generally used to characterize low temperature fracture properties of asphalt mixtures, the SCB 

test has been used to determine both low and intermediate temperature cracking performance 

(Elseifi, Mohammad, Ying, & Cooper III, 2012; Li & Marasteanu, 2010; Mohammad, Kim, & 

Elseifi, 2012). Since its first implementation in rock mechanics (Chong & Kuruppu, 1984) and 

later application in asphalt performance testing, the SCB test has been shown to have acceptable 

sensitivity to mix design variables (Al-Qadi et al., 2015) as well as loading rate and testing 

temperatures (Haslett, Dave, & Daniel, 2017). Moreover, the SCB has also shown potential to be 

used for characterizing the mixed-mode fracture properties of asphalt mixtures (Im, Ban, & Kim, 

2014).  

In order to determine the fracture properties of asphalt materials using the SCB geometry, the force 

versus load-line displacement (LLD) curve under a monotonic loading protocol has been 

investigated by different researchers (Li & Marasteanu, 2010; Saha & Biligiri, 2016). Figure 1 

indicates a typical SCB force-LLD curve.  
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Figure 1: Typical Load-LLD curve. 

The curve can be divided into two distinct portions with respect to the required force for the crack 

to initiate (pre-peak) which is followed by a decrease in the force when the crack propagates along 

the specimen (post-peak). As the force is applied, the portion of the specimen below the neutral 

axis undergoes tensile strains, which result in the accumulation of tensile stresses in the notch tip 

vicinity. These stresses bring about the creation of a region of micro-cracks, namely the fracture 

process zone (FPZ), in front of the crack tip. Although the length of the fracture process zone can 

be considered as a material specific property (Bažant & Kazemi, 1990), its determination requires 

either reliance on inverse analysis based modelling approaches or use of advanced laboratory 

characterization techniques, such as acoustic emissions (Li, Marasteanu, Iverson, & Labuz, 2006). 

Based on principles of fracture mechanics, the energy required for generation of a unit fracture 

surface area in a material is called the fracture energy (Gf) (Anderson, 2005). This energy is the 

sum of the positive surface energy (S) and the negative released strain energy (U). The surface 

energy is the energy absorbed during the crack growth because of the creation of newly made free 

surfaces as the atomic bonds break and the specimen’s bulk energy is converted into the surface 

energy. The surface energy increases linearly with respect to crack length. On the other hand, the 
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released strain energy is related to the unloaded region of material adjacent to the free surfaces as 

the crack is growing. The strain energy is proportional to the squared length of the crack 

(Anderson, 2005). Considering the order of correlation of these energies to the crack length, the 

energy required for the crack to propagate decreases at a critical crack length where the peak 

resistive force occurs in the force vs LLD curve (Figure 1).  

In order to use the SCB geometry to evaluate the cracking properties of asphalt mixtures in a 

relatively simple manner, different testing protocols and analysis methods have been proposed and 

investigated. For instance, in the work conducted by Louisiana Transportation Research Centre 

(LTRC) (Mohammad et al., 2012), the SCB test is conducted at a loading rate of 0.5 mm/minute 

at 25°C using three different notch depths on specimens 75 mm diameter and 57 mm thick. The 

analysis of the test results is performed through determination of the critical strain energy rate (J-

integral) (AASHTO TP105). The low temperature SCB fracture test, developed by (Li & 

Marasteanu, 2005), utilizes a 25 mm thick specimen that is tested using the crack mouth opening 

displacement (CMOD) rate of 0.015 mm/minute at low temperatures (typically in range of -12 to 

-40°C) and determines asphalt mixture’s fracture energy and stress-intensity factor (AASHTO 

TP107). The third commonly used SCB testing method, which is of main interest in this paper, is 

the protocol developed by the Illinois Centre for Transportation, commonly referred to as the 

Illinois Flexibility Index Test (I-FIT) (Ozer et al., 2016). The test is conducted using a 50 

mm/minute LLD rate at 25°C on specimens 50 mm thick and 75 mm diameter. The notch depth is 

constant among all the replicates and is equal to 15 mm (AASHTO TP124). The I-FIT test was 

originally developed with the purpose of discriminating the cracking performance of mixtures with 

varying amounts of recycled asphalt pavement/shingles (RAP/RAS) (Al-Qadi et al., 2015). In 

order to rank the mixtures through I-FIT results, the fracture energies (area under the force-LLD 

curve divided by the ligament area) of different mixtures were compared. The comparisons 
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indicated the insufficiency of this parameter as mixtures with different rheological properties could 

result in similar fracture energy values. It should be noted that fracture energy here is a global 

fracture energy (not a material scale property) that is a function of the material’s intrinsic fracture 

energy but dependent on specimen geometry and other testing factors (such as loading rate and 

test temperature). Due to poor discrimination between mixtures from fracture energy alone, other 

possible influential parameters from the force-LLD curve on the FPZ such as the peak load, the 

slope at the inflection point, and critical displacement were investigated (Al-Qadi et al., 2015). As 

a result, the flexibility index (FI), which is an engineering parameter, was developed to correlate 

the crack growth velocity and the brittleness of the mixtures. 

𝐹𝐼 = 𝐴 ×  
𝐺𝑓

𝑎𝑏𝑠 (𝑚)⁄                       Equation 1 

Where:   

A= Unit correction coefficient taken as 0.01, 

Gf = Fracture energy (J/m2) 

m = Slope at the inflection point 

Although the flexibility index has generally been shown to be a good indicator of cracking 

performance, in many instances it results in relatively high coefficient of variation (COV) among 

the replicates, which can significantly reduce the practicality of using this parameter for routine 

use.  The high COV results from the fact that the m-value is derived from the shape of the post-

peak segment of the force-LLD curve and is highly sensitive to the gradation, density and air void 

distribution within the specimen, as well as other random variables such as operator variability etc. 

(Al-Qadi et al., 2015). For the same reasons, the FI may not be able to discriminate the performance 

of brittle or long-term aged mixture, as these mixtures may exhibit steep post peak curves resulting 
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in indeterminate or quite low FI values (as low as 1) (Kaseer et al., 2018). Other studies have also 

indicated that the FI may not be sensitive to variations in asphalt content (Zhou et al., 2017). 

As an alternate to FI, (Zhu et al., 2017) proposed the use of Pmax to determine the fracture strength 

(Sf) from the DCT test. The fracture energy normalized by Sf  resulted in an index parameter called 

Fracture Strain Tolerance (FST). FST was shown to lower the COV, while maintaining high 

discriminability among the mixtures. Researchers at the Texas A&M University also used the Pmax 

as a normalizing factor for fracture energy and introduced the Crack Resistance Index (CRI) as an 

alternative to FI (Kaseer et al., 2018). It should be noted that CRI does not account for specimen 

to specimen geometric differences, whereas FST does account for specimen geometry in the index 

calculation. The comparisons for CRI indicated a decrease in COV for the short-term oven aged 

(STOA) mixtures compared to FI. However, the study indicated a higher variability of CRI 

compared to FI for long-term oven aged (LTOA) mixtures with both indices indicating similar 

trends for different mixtures. Moreover, CRI may need further evaluation since the peak load as a 

normalization factor may not be physically interpretable in terms of fracture process. There could 

also be examples of polymer modified mixtures with high fracture energy and high peak load 

where the CRI and FST may not be capable of discriminating among them. 

A study conducted at the University of Arkansas used the concept of Resistance Curve (R-Curve) 

to determine mixture fracture properties. The R-Curve indicates the cumulative fracture energy as 

a function of crack extension. In general, if the slope of R-Curve is zero then the material is brittle 

and if the slope maintains a gradual increment then the behaviour is ductile (Anderson, 2005). The 

benefit of using the R-Curve is that it provides a dynamic trace of the strain energy with respect to 

crack growth and it can better explain the crack initiation and propagation mechanism. Therefore, 

the application of R-Curve can be supported by the fracture mechanics. In addition, The R-curve 
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indicated a high potential for determining the effect of mixture properties as well as environmental 

factors on the cracking performance (Yang & Braham, 2018). 

Most of the current approaches and parameters used in analysing the SCB test focus merely on the 

characteristics of the force-LLD curve whether it is the slope, peak force, or the crack extension. 

However, the factor of loading rate is an equally important influential parameter in characterizing 

viscoelastic material; this has been neglected in the development of existing index parameters for 

discriminating the fracture properties of asphalt mixtures. Based on the rate dependency of the 

viscoelastic material, it can be hypothesized that the development and growth of the FPZ and 

consequently the crack propagation, could be significantly different for mixtures with similar Gf, 

Pmax or even post-peak slopes at the inflection point. However, the displacement measured by 

means of the extensometers or clip-on gauges in most of the fracture tests is an average 

deformation value that could be far from the actual FPZ and may not be appropriate to characterize 

the true fracture properties of viscoelastic materials at intermediate temperatures. A study 

conducted at the University of Nebraska indicated the importance of rate dependency of asphalt 

mixtures in capturing the local fracture processes and FPZ through analysing the SCB test results 

at different loading rates (1, 5, 10 and 50 mm/minute) using a digital image correlation system and 

finite element modelling (Im, Kim, & Ban, 2013). 

The objective of this study is to explore use of a rate dependent cracking index parameter based 

on the I-FIT testing method which can be used to describe the crack initiation and propagation 

process with respect to the fracture processes in viscoelastic materials. The ability of this index to 

discriminate cracking resistance of asphalt mixtures as well as for a mixtures at different aging 

levels is evaluated and compared to the FI parameter. Furthermore, the resultant coefficient of 

variation for the new parameter (rate dependent cracking index, RDCI) is compared to FI. 
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DEVELOPMENT OF THE RATE DEPENDENT CRACKING INDEX (RDCI) 

Perhaps, the rate dependency and hereditary behavior are the main distinguishing characteristics 

for viscoelastic materials that delineate them from elastic solids. Multiple studies (Bažant & Li, 

1997; D’Amico et al., 2013) have indicated the importance of time dependency in the fracture 

mechanics of viscoelastic materials and indicate that the crack growth in viscoelastic materials 

originates from viscoelastic deformation in the process zone. This deformation provides the 

required energy for gradual propagation of the crack with respect to time as opposed to brittle 

materials such as metals (Bradley, Cantwell, & Kausch, 1997). For example, a study conducted by 

Chung and Williams (Chung & Williams, 1991) used a three-point bend notched specimen to 

evaluate the effect of time along with the load line displacement measurements in the cracking 

process. The results indicated that before crack growth initiates, the displacement as a function of 

time is caused by the viscoelastic deformation. As the crack growth commences, the viscoelastic 

constitutive relationships combined with compliance can be applied to calculate the crack size with 

respect to time and consequently the crack growth rate and stress intensity factor using only simple 

LLD versus time measurements.  

In order to develop a simple, useful rate dependent cracking index in this study, three main 

parameters in the I-FIT test and the force-LLD curve were considered: 

1- The cumulative work (Wc) as a function of time (t) 

2- The peak force (Pmax) 

3- Times to reach the peak force and 10% of the peak force (post-peak) on the force-LLD 

curve (tc). (The use of these specific times is discussed in the following portion of the 

paper.) 

The average fracture energy has been used as the main parameter in evaluating the mix crack 

resistance in the I-FIT test. However, it was indicated that a single average value may not be able 
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to differentiate the behaviour of the mixture during crack growth. Therefore, the cumulative work 

(accumulated area under the force-LLD curve, Figure 2) as a function of time is used to lower the 

challenge faced by use of the fracture energy value in terms of its inability to capture the crack 

velocity. 

The cumulative work over time not only exhibits the history of the dissipated work during the 

crack growth, but it can also be used to indicate the crack resistance rate at any time during the 

loading period. From a mechanistic perspective, the rate of the work over time (
Δ𝑊

Δ𝑡
) is power (P), 

which simply indicates the amount of energy transferred per unit time. Thus, when evaluating a 

material’s fracture resistance potential, it can be hypothesized that for a certain duration from the 

start of loading application (indicated by t0), a material requiring more power will exhibit more 

brittle behaviour due to a larger amount of stored potential strain energy. In the case of viscoelastic 

materials such as asphalt mixtures, while part of the energy is stored as a potential strain energy, a 

portion of the energy is spent towards the creep dissipation prior to the crack initiation.  A coupled 

experimental and numerical simulation based analysis can provide the decomposition of the 

potential strain energy and creep dissipation (Song, Paulino, & Buttlar, 2006). However, for 

routine usage of a cracking index parameter such analysis is not feasible.  Over a smaller range of 

time, such that when Δ𝑡 approaches 0, it can be reasonably assumed that power is the rate of the 

work with respect to time, i.e. 
Δ𝑊

Δ𝑡
≈

d𝑊

d𝑡
.  Typically, this slope is referred to as the instantaneous 

power (Pt), which is a scalar quantity that indicates the instantaneous energy dissipation rate and 

can be rewritten as follows: 

𝑃𝑡 = 
d𝑊

d𝑡
 = 𝑭∙

d𝒙

d𝑡
; 

d𝒙

d𝑡
 = V                Equation 2 

Therefore:  

𝑃𝑡 = 𝑭 ∙ 𝑽                            Equation 3 
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Where:  

Pt = instantaneous power; F= force; V= instantaneous velocity 

The instantaneous power is the scalar product of force and velocity at any time (t) during the test. 

During the crack initiation process, the rate of instantaneous power will change drastically; this is 

due to transition of the energy state of the material from predominantly controlled by potential 

strain and creep dissipation modes to fracture dissipation dominant mode. The crack initiation 

usually occurs in quasi-brittle materials such as asphalt mixtures when the internal stresses 

approach the tensile strength of the material (Dave & Behnia, 2018). This instance can be 

reasonably assumed to happen near the occurrence of the peak force in a fracture test. Therefore, 

the time required for the peak load to occur will be used as the first time point in this study; this is 

indicated by symbol tpeak. Defining a second critical point of time is necessary to consistently 

define the ending point of the I-FIT test where it is assumed that full crack propagation has 

happened and the test specimen has no more load carrying capacity. For test practicality purposes 

and to prevent damage to test equipment, tests are typically stopped at 10% peak force. Therefore, 

the time at which 10% of peak force occurs, in the post peak segment of the load-LLD curve, is 

chosen as the second time point of interest. 

As a summary, in order to explore a rate dependent cracking index parameter the following 

variables have been introduced and described: 

 Cumulative work with time, Wc 

 Instantaneous power at the peak force, Pt = peak 

 Two times of interest on the force-LLD curve; 

o Time at peak load, tpeak  

o Time at 10% peak load at post-peak, t0.1peak 
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In order to calculate various parameters from the fracture test results, the cumulative work (Wc) 

and time data were fitted using a polynomial equation and the area under the curve from the tpeak 

to t0.1peak were calculated. In order to focus on the fracture work associated with propagation of the 

crack in the specimen, the area under the cumulative work and time from start of test to tpeak was 

excluded from the integration. The resulting area is then normalized by the product of the 

instantaneous power at peak force (Pt = tpeak) and the fractured ligament area (product of fracture 

width and length) to calculate an index referred to as the rate dependent cracking index (RDCI):  

𝑹𝑫𝑪𝑰 =
∫ 𝑾𝒄  .𝒅𝒕

𝒕𝟎.𝟏𝒑𝒆𝒂𝒌
𝒕𝒑𝒆𝒂𝒌

𝑷𝒕𝒑𝒆𝒂𝒌× 𝒍𝒊𝒈𝒂𝒎𝒆𝒏𝒕 𝒂𝒓𝒆𝒂
×C                                     Equation 4 

Where: 

RDCI = rate dependent cracking index (
𝑠2

𝑚2 × 104) 

∫ 𝑊𝑐  . 𝑑𝑡
𝑡0.1𝑝𝑒𝑎𝑘

𝑡𝑝𝑒𝑎𝑘
  = area under the cumulative work vs time 

𝑃𝑡 = instantaneous power at peak force 

C= Unit correction factor set to 0.01 to lower the order of magnitude of the RDCI and for 

simplicity of plotting 

Ligament area = specimen thickness times the ligament length     
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Figure 2 : Determination of cumulative work between time at peak load and 0.1 of peak 

load. 

 

Comparing the RDCI to the FI, the area under the Wc curve and the Pt = tpeak in RDCI replaced the 

fracture energy (Gf) and the post peak slope (m) at the inflection point on the force-LLD curve in 

FI respectively. Although it may appear that the area under the Wc curve is still a single average 

value, the expansion of the integral results in the product of impulse (J) and displacement as such:  

𝛥𝑊 

𝛥𝑡
 = 𝑭 ∙

𝛥𝒙 

𝛥𝑡
            Equation 5 

Multiplying both sides of above equation by (Δ𝑡)2 

𝚫𝑾 ∙  𝚫𝒕 = ( 𝑭 ∙  𝛥𝑡) ∙ 𝜟𝒙 ; such that 𝛥𝒙 = 𝒙0.1𝑝𝑒𝑎𝑘 - 𝒙𝑝𝑒𝑎𝑘       Equation 6 

Where: 

𝑭 ∙ 𝛥𝑡 = J or impulse (N.s) 

𝒙0.1peak = displacement at 0.1 peak load (post-peak segment) 

𝒙peak = displacement at peak load 

C
u
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v
e 

W
o

rk
 (

J)

Time(s)

t0.1peak

Pt=tpeak
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Impulse in a fracture test can be interpreted as the capability of the material to tolerate force over 

a duration of time (similar in concept to momentum, however here in context of the formation of 

new fractured surfaces within the specimen).  A material with higher impulse during the course of 

a fracture test will have more fracture resistance capacity and typically a more ductile response 

(due to ability of having greater fracture work potential during crack propagation).  On the other 

hand, the instantaneous power at the peak load as a normalizing parameter indicates the rate at 

which the total work accumulation occurred until the point of crack initiation. A smaller rate is 

more desirable as it reveals a shallower transition between pre-peak and post-peak energies, that 

is, a balance between potential strain energy accumulation, viscous creep dissipation and fracture 

dissipation.  A major advantage of the above described parameters is that they inherently account 

for the rate dependency of the material.  

One may argue that for a constant rate of displacement (in case of I-FIT 50 mm/min test), the 

instantaneous power will have a similar normalizing effect of peak load in parameters such as CRI. 

While this holds true for a test with a constant crack velocity, for tests controlled with constant 

LLD rate, often the crack velocity is not constant (Yang & Braham, 2018). Furthermore, the field 

distress investigations often indicate a non-uniform crack growth rate (Daniel et al., 2018), thus 

for these reasons, a rate dependent parameter such as instantaneous power can better describe the 

fracture processes in viscoelastic materials.   

MATERIALS AND METHODS 

To evaluate the proposed RDCI parameter in terms of distinguishing cracking resistance of 

different types of asphalt mixtures, 18 different plant-produced hot mixed asphalt (HMA) mixtures 

with varied designs, fabrication processes, and aging levels were selected from Minnesota, New 

Hampshire, and Virginia.  This resulted in a total of 28 different mix types and conditions that are 

assessed herein. The mixtures include two asphalt rubber gap graded (ARGG) and other types of 
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conventional and polymer modified mixtures which were tested using the I-FIT test in accordance 

with the AASHTO TP 124 test method at a test temperature of 25°C. Minnesota and New 

Hampshire mixtures were reheated and compacted in lab (referred to as plant-mixed lab compacted 

or PMLC) while the Virginia mixtures were sampled and compacted in the plant (plant mixed 

plant compacted, PMPC) without reheating.  Using a Superpave gyratory compactor, the 

specimens were compacted to the typical target in-field construction air void level of 6±0.5% for 

New Hampshire and 7±0.5% for Minnesota and Virginia. The number of replicates from each 

source is 4, 24 and 3 for New Hampshire, Minnesota and Virginia respectively.  

Table 1 summarizes the mixture design and specimen fabrication methods. The RBR in the table 

is the percent replacement binder ratio for New Hampshire and Minnesota mixtures, however for 

the Virginia mixtures this is actually the amount of RAP in the mixture by weight of total mix. 

However, since the scope of the paper is to compare the indices rather than the mixtures 

performance with respect to the design properties, this discrepancy may not affect the conclusions. 

There are five highlighted mixtures in the table which are selected for further evaluation of the 

cracking index parameter at different aging levels which will be discussed in the following sections 

of the paper. 
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Table 1: Mixture characteristic summary  

Mixture 
Mix 

Sampling 

Location 

Specimen 

Fabrication 

Method 

Nominal 

Maximum 

Aggregate 

Size  
(mm) 

Air 

Void 

(%) 
Gyration Binder 

(PG) 
Asphalt 

Content 

(%) 

RBR/ 
RAP 

(%) 

NH_ARGG-1 

New 

Hampshire 

Plant Mixed-

Lab 

Compacted 

(PMPC) 

12.5 

4.0 

75 

58-28 
7.8 0.0 

NH_ARGG-2 7.6 6.6 
NH_64-28 64-28 5.4 18.5 
NH_70-34 70-34 5.8 0.0 

NH_76-28_1 76-28 5.4 18.5 
NH_58-28_1 

50 
58-28 5.8 16.2 

NH_58-34 58-34 5.4 18.5 
NH_76-28_2 

9.5 75 

76-28 6.1 14.8 
NH_58-28_2 58-28 5.9 16.9 
NH_64-28_1 

64-28 
6.4 0.0 

NH_64-28_2 6.3 18.5 
MN_58-34 

Minnesota 
Plant Mixed-

Lab 

Compacted 

(PMPC) 
9.5 

3.0 
90 

58-34 5.1 15.8 
MN_58-28_1 

4.0 
58-28 

5.8 17.2 
MN_58-28_2 5.4 16.7 
MN_58-28_3 5.0 50 5.8 12.1 

VA_76-22 
Virginia 

Plant Mixed-

Plant 

Compacted 

(PMPC) 
9.5 4.0 75 

76-22 5.6 0.0 
VA_70-22 70-22 5.2 20.0 
VA_64-22 64-22 5.4 40.0 

 

RESULTS AND DISCUSSION 

Statistical analysis of Means 

The RDCI parameter was calculated and compared to the FI. A graphical comparison between the 

RDCI and FI is depicted in Figure 3. The error bars on the graph indicate one standard deviation 

from the mean. Although similar trends may be observed from the graphs, there are differences 

between the rankings from the two indices such as NH_58-28_2, NH_76-28_1 and MN_58-28_2 

that have different orders of ranking from the two indices. A Spearman’s rank-order statistical 

analysis was conducted to determine the significance of difference in the ranking of mixtures using 
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FI and RDCI. The correlation coefficient was determined to be 0.98, which indicates that there is 

only negligible difference between the ranks yielded by these two parameters.  

 

Figure 3. Comparison between RDCI and FI 

In comparison of the two indices, the ability to discriminate mixture performance based on 

magnitude is also important. A student’s t-test using 0.05 significance level was conducted to 

determine the statistical difference between the means for each mixture for each index. The results 

from this test are presented in Table 2. The mixtures that have the same letter in each column 

indicate that those mixtures are statistically similar in terms of mean and standard deviation, 

whereas the mixtures that are not connected by the same letter are significantly different. For 

example, considering the RDCI, MN_58-28_3 is not grouped with any of the other mixtures, while 

the analysis indicates that the FI for this mixture is similar to MN_58-28_1 and NH_76-28_2.  It 

should be noted that the MN_58-28_3 mixture has same binder type and comparable aggregate 

gradation as the MN_58-28_1 mixture, however the volumetric properties and RBR between the 

two are substantially different, specifically the MN_58-28_3 mixture is designed using 

Superpave5 concept and has a significantly lower RBR.  Also, with respect to RDCI the mixtures 

are categorized in slightly broader differentiated groups (A to K) as compared to that by FI (A to 
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H). The t-test results and corresponding grouping demonstrate that the RDCI is either equal or 

better at discriminating different asphalt mixtures as compared to FI. 

Table 2. Results from Each Pair Student’s t-test at significance level of 0.05 

FI  RDCI 

Mixture Connecting Letters  Mean Mixture Connecting Letters 
Mean 

NH_70-34 A        39.3 NH_70-34 A           65.7 

MN_58-28_3  B       25.8 MN_58-28_3  B          45.6 

MN_58-28_1  B C      22.6 MN_58-28_1   C         40.5 

NH_76-28_2  B C D     21.4 NH_76-28_2   C D        36.0 

NH_64-28_1   C D E F   19.6 NH_64-28_1   C D E       35.1 

NH_ARGG-1   C D E F   19.0 NH_ARGG-1   C D E F      33.6 

NH_76-28_1   C D E F   18.8 MN_58-34    D E       32.8 

MN_58-34    D  F   18.6 NH_58-34    D E F G     32.7 

NH_58-34   C D E F   18.0 NH_76-28_1    D E F G H    31.0 

NH_58-28_2    D E F   15.7 NH_ARGG-2    D E F G H    29.5 

NH_ARGG-2    D E F   15.4 NH_64-28    D E F G H    28.1 

MN_58-28_2     E    14.8 MN_58-28_2      F G H    26.7 

NH_64-28     E F G  14.7 NH_64-28_2     E F G H    26.5 

NH_64-28_2     E  G  13.5 NH_58-28_1       G H I   24.0 

NH_58-28_1     E  G  13.1 NH_58-28_2        H I J  22.4 

VA_76-22       G H 8.2 VA_76-22         I J K 15.3 

VA_70-22        H 5.4 VA_70-22          J K 12.6 

VA_64-22        H 2.2 VA_64-22           K 4.6 

 

Analysis of Replicate Variations 

The coefficient of variation (COV) of the test replicates demonstrates the extent of the variation 

between the replicates with respect to the mean and a lower COV is more desirable as it indicates 

higher repeatability of the test results as well as higher reliability in selecting the proper mixture 
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to withstand cracking. Figure 4 indicates the COVs for FI and RDCI. It can be observed that except 

for a few cases, the COVs associated with RDCI are lower as compared to ones determined for FI.  

The results for Minnesota mixtures (MN_##-##_# mixtures) are of particular interest.  As opposed 

to other mixtures that have been tested with three or four replicate specimens, these have been 

tested with 24 replicate specimens.  Due to such high number of replication, the COVs of both 

indices for these mixtures are expected to be resulting from the material scale variability associated 

with the index itself and not necessarily the variability in testing.  For the four Minnesota mixtures, 

RDCI consistently showed a lower COV than FI. 

Figure 5 indicates the relative percent difference in COV between FI and RDCI with respect to 

COV of FI. The range of relative differences is from 31% higher COV (VA_70-22) to 80.3% lower 

COV (NH_70-34) for RDCI as compared to FI.  An overall average of 10.6% lowering of COV is 

observed as a combined average of all mixtures and tests.  

 

Figure 4. Comparison of Coefficient of variations (COV) determined by cracking index 

parameters 
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Figure 5. Percent difference in COV for RDCI and FI with respect to COV for FI 

Analysis of effect of aging  

Mechanical properties of the asphalt mixtures can substantially change during production and in-

service due to the volatilization and oxidation of asphalt binder. This typically results in a reduced 

relaxation capability and increased brittleness and therefore greater susceptibility to cracking. 

Different laboratory aging methods have been proposed and investigated to simulate the short and 

long-term aging of the mixtures. However, proper analysis tools should also be available to 

distinguish the mixture performance at different levels of aging. A set of five plant-produced 

mixtures (previously indicted in Table 1) were selected to investigate the effect of aging at three 

different levels as following: 

 STA: Short-term aged (aged during production and reheated for compaction) 

 LTOA 5D: Long-term oven aged (loose mixture aged for 5 days at 95°C) 

 LTOA 12D: Long-term oven aged (loose mixture aged for 12 days at 95°C) 

The comparative FI and RDCI results from the analysis of the five mixtures at three aging levels 

is presented in Figure 6. In general, it can be seen that both indices follow a similar trend with 

respect to aging levels and the difference between the STA and 5 days at 95°C is relatively 
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pronounced. However, there is not as perceptible a difference between the two LTOA levels. 

Therefore, each pair student’s t-test at a 0.05 significance level (95% confidence interval) was used 

to determine if the two indices have been able to discriminate between different aging levels. The 

results from the statistical evaluation of cracking indices with respect to different aging levels is 

summarized in Table 3. Both indices have been able to easily determine the difference between 

STA and 5 days at 95°C aging levels for all five mixtures. For the LTOA conditions, the capability 

of the indices in discriminating the mixtures performance is different. Both indices have been able 

to differentiate the aging levels of NH_76-28_2, but considering the NH_70-34 mixture, only 

RDCI with a p-value of 0.0328 has been able to discriminate the two LTOA conditions. Although 

for the rest of mixtures in the table none of the indices have been able to statistically discriminate 

the LTOA levels at a reliability level of 95%, the p-values determined for RDCI are lower as 

compared to FI.  Thus for the cases where neither index was able to confidently distinguish 5 and 

12 days oven aging, RDCI has a greater probability of discrimination than FI.  The results and 

discussions of test results for the five mixtures at different aging levels indicate that RDCI can 

distinguish effects of aging on cracking properties of asphalt mixtures as well or better than FI. 

 

Figure 6. Evaluating the sensitivity of FI and RDCI to aging 
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Table 3. Statistical evaluation of cracking indices to distinguish the aging levels 

 

The COVs of the replicates at the two LTOA levels were evaluated and plotted in Figure 7. At the 

5-day aging level, the COVs determined through the FI are indicated to be lower for most of the 

instances, whereas this trend is essentially reversed for the 12-day aging level with lower COVs 

determined through RDCI. In general, with the assumption of a 20% COV as an acceptable range 

of variation of results in one standard deviation from the mean (Ozer et al., 2017), there is only 

one case (NH_64-28_2 at 5D) that RDCI exceeds the threshold while there are three cases 

(NH_76-28_2 at 12D, NH_64-28_1 at 12D and NH_64-28_2 at 5D) where FI exceeds the 

threshold.  

Mixture Compared Aging Levels p-value (FI)
p-value 

(RDCI)

NH_70-34

NH_70-34_STA NH_70-34_12D 0.0012 <0.0001

NH_70-34_STA NH_70-34_5D 0.0029 <0.0001

NH_70-34_5D NH_70-34_12D 0.6752 0.0328

NH_76-28_2

NH_76-28_2_STA NH_76-28_2_12D <0.0001 <0.0001

NH_76-28_2_STA NH_76-28_2_5D <0.0001 <0.0001

NH_76-28_2_5D NH_76-28_2_12D 0.0409 0.0485

NH_58-28_2

NH_58-28_2_STA NH_58-28_2_12D <.0001 0.0001

NH_58-28_2_STA NH_58-28_2_5D 0.0002 0.0014

NH_58-28_2_5D NH_58-28_2_12D 0.406 0.1189

NH_64-28_1

NH_64-28_1_STA NH_64-28_1_12D <0.0001 <.0001

NH_64-28_1_STA NH_64-28_1_5D <0.0001 <.0001

NH_64-28_1_5D NH_64-28_1_12D 0.1225 0.1092

NH_64-28_2

NH_64-28_2_STA NH_64-28_2_12D <0.0001 <0.0001

NH_64-28_2_STA NH_64-28_2_5D <0.0001 <0.0001

NH_64-28_2_5D NH_64-28_2_12D 0.4545 0.1338
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Figure 7. Comparison of coefficient of variations of the index parameters at different long-

term oven aged levels 

SUMMARY, CONCLUSION AND FUTURE WORK 

A number of asphalt laboratory cracking performance tests have been proposed and investigated 

at different loading and temperature conditions. The semi-circular bending test is one of the 

simplest geometries that has shown promising results with respect to field cracking. However, the 

Flexibility Index (FI) parameter associated with this test may not always be able to discriminate 

the performance between different mixtures, as it is highly dependent on the post-peak slope at the 

inflection point of the load-displacement curve. This can be a more significant problem for brittle 

or aged mixtures where the post-peak slope might be too steep resulting in significantly low or 

even undetermined FI values, which are sometimes followed by relatively high variations in FI 

values.  

Based on the viscoelastic nature of asphalt mixtures, this study proposed a rate-dependent cracking 

index (RDCI) parameter to analyse the SCB-IFIT results. In order to develop this parameter, the 

time evolution of cumulative work curve (WC) is used. Two critical time points on this curve are 

determined; the time associated with the peak force (tpeak) and the time associated with the 10% of 

the peak force on the post-peak portion (t0.1peak). The instantaneous power at tpeak is used to 

normalize the area under Wc curve between tpeak and t0.1peak.  Through use of cumulative fracture 
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work at different times and through use of instantaneous power, the RDCI parameter provides an 

estimate of the impulse associated with crack propagation in the specimen.  Because rate is 

inherently included in the calculations, the RDCI parameter allows for better characterization for 

rate dependent fracture processes.  

With respect to method of development of RDCI the following general observations can be made: 

 The development of RDCI is supported by the combination of physics and fracture 

mechanics and is free from any type of empirical or undefinable variable within the 

parameter. 

 The use of  continuous cumulative work at various times can help with describing and 

evaluating the crack formation and propagation mechanisms at any given time during the 

test and due to inherent presence of time in all work and power terms of RDCI; it is 

expected to better capture the rate dependency of fracture in asphalt mixtures.  

In order to evaluate the capability of this parameter to discriminate different asphalt mixtures and 

aging conditions, a total of 18 mixtures gathered from Minnesota, New Hampshire and Virginia 

with different mix design and rheological properties were selected and tested by means of SCB-

IFIT test at 25°C.  The statistical analysis of RDCI and FI for each mixture was used to assess the 

capability of each index in differentiating the cracking performance of mixtures. Further 

investigations were conducted on five select mixtures by evaluating the index parameters at three 

different aging levels. The findings of the analysis presented in this paper are summarized as 

follows: 

 Based on Spearman’s rank-order statistical analysis no significant difference was 

determined in the ranking of mixtures using FI and RDCI. 
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 The student’s t-test analysis indicates RDCI has better discrimination between the 

mixtures at short and long-term oven aged conditions. 

 In this study RDCI resulted in an overall average reduction of 10.6% in the COV. 

 Results from statistical comparisons of the aging levels for 5 mixtures indicated that the 

RDCI is able to differentiate the effect of different aging levels at a reliability level of 86% 

whereas the FI is able to do so at a reliability level of only 32%. 

As opposed to laboratory testing conditions, the crack growth in the field may not follow a constant 

displacement rate, especially after the crack reaches the critical length. Therefore, a comparative 

evaluation between FI and RDCI should be conducted to investigate the capability of parameters 

in discriminating the rate dependency of the fracture using different displacement rates and testing 

temperatures. Also, the RDCI as a flexible cracking index and independent of the post-peak slope, 

can help improve the testing protocol repeatability. Moreover, further investigations of this index 

can be performed in light of other monotonic tests such as disk-shaped compact tension to improve 

the results and repeatability of such tests. 
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